검색 : [ author: 장기림 ] (1)

시맨틱 얼굴 변형을 이용한 심층신경망 공격과 강건성 향상

장기림, 김영훈

http://doi.org/10.5626/JOK.2021.48.7.809

심층신경망은 자율 주행, 얼굴 인식, 물체 탐지 등 다양한 분야에서 널리 쓰이고 있다. 하지만 누군가 악의적인 의도로 심층신경망의 입력을 교란시키면, 잘 학습된 신경망도 오작동 할 수 있다. 일반적인 공격 방법은 이미지의 픽셀 공간에 교란을 추가하여 이미지를 조작한다. 그러나 픽셀 기반의 변형은 쉽게 사람의 눈에 띌 수 있기 때문에 현실적인 효과적 공격은 이미지를 부자연스럽게 변형하여 네트워크를 교란시키는 방법이라 할 수 있다. 본 논문에서는 얼굴 이미지의 부위별 분할을 통해 자연스러운 색감 변형을 이용한 새로운 공격 방법을 제안한다. 시맨틱 얼굴 변형(Semantic face transformation) 기반 이미지를 생성하였으며, 이를 통해 심층신경망 이미지분류의 정확도를 낮출 수 있음을 검증하였다. 또한 우리 방법으로 생성된 변형 이미지를 이용하여, 강건성 훈련한 후 신경망의 강건성을 향상시킬 수 있음을 검증하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr