디지털 라이브러리[ 검색결과 ]
다중 MR 영상에서 크기 정규화 및 다중 손실함수를 사용한 딥러닝 모델 기반 전립선암 악성도 예측 개선
http://doi.org/10.5626/JOK.2023.50.10.866
전립선암은 전 세계적으로 남성에서 두 번째로 흔하게 발생되는 암이며, 악성도에 따라 재발 가능성 및 치료의 효과가 달라지기 때문에 전립선암의 악성도를 예측하는 것이 필수적이다. 본 연구는 다중 파라미터 자기공명영상에서 전립선암의 악성도를 예측하기 위해 크기 정규화를 적용하여 작은 종양에 대한 정보를 강화한다. 또한, 시각적 특징이 유사하지만 악성도가 다른 종양을 구분하기 위해 다중 손실함수를 제안한다. 실험 결과, ADC 맵 크기 정규화 패치로 학습한 제안된 모델은 정확도 76.28%, 민감도 76.81%, 특이도 75.86%, AUC 0.77의 성능을 보인다. 또한 1.5cm 미만인 작은 종양에서 종양 중심 패치와 비교하여 크기 정규화된 ADC 맵이 정확도 76.47%, 민감도 90.91%, 특이도 69.57%로 각각 17.65%, 27.27%, 13.05%의 향상된 성능을 보인다.
흉부 CT 영상에서 캡슐 네트워크 기반의 듀얼-윈도우 앙상블 학습을 통한 폐암 자동 분할
http://doi.org/10.5626/JOK.2021.48.8.905
폐암이 불규칙한 형태를 갖거나 유사한 밝기값을 갖는 주변 구조물이 존재하는 경우 흉부 CT 영상에서 폐암의 경계를 정확하게 구분하는 것이 어렵다. 본 논문에서는 폐암과 주변 구조물과의 관계를 학습하기 위해 캡슐 네트워크를 활용하고 주변 구조물과의 구분을 위해 폐 창 영상에 종격동 창 영상을 추가로 고려하는 듀얼-윈도우 앙상블 네트워크를 제안한다. 첫째, 입력 CT 영상을 폐 창 영상과 종격동창 영상으로 밝기값 정규화 및 공간 정규화를 수행한다. 둘째, 두 개의 입력 영상을 이용해 각각의 캡슐네트워크를 학습하여 폐암을 분할한다. 셋째, 폐 창 영상과 종격동 창 영상을 이용한 분할 결과를 각 영상의 특성에 기반한 가중치를 반영하여 평균 투표를 통해 앙상블 함으로써 최종 분할 마스크를 생성한다. 제안 방법을 통한 분할 결과, DSC는 75.98%로 가중치를 고려하지 않은 분할 방법 대비 0.53%p 향상되었다. 또한 폐암이 주변 구조물에 둘러싸여 있어도 분할 정확도가 개선되었다.
치료계획용 4D MDCT와 치료 시 획득한 4D CBCT간 영상정합 및 종양 매칭을 이용한 방사선 치료 시 종양 움직임 추적
폐암 환자의 영상유도 방사선 치료의 경우 환자의 호흡 및 심장박동에 따라 종양의 움직임이 변화할 수 있으므로 치료 시 종양의 움직임을 추적하는 것이 필요하다. 본 논문에서는 치료계획용 4D MDCT 영상과 치료 시 획득한 4D CBCT 영상의 3차원 영상 정보를 기반으로 종양 움직임을 추적하는 방법을 제안한다. 첫째, 효율적으로 치료 시 종양의 움직임을 추적하기 위해 치료계획용 4D MDCT 영상에서 획득한 종양 움직임 모델을 통해 종양의 전역적 움직임을 예측한다. 둘째, 종양 움직임 추적의 정확성을 높이기 위해 4D CBCT 영상에서 종양 주변의 구조적 정보를 이용해 세부적 움직임을 보정하여 종양의 지역적 움직임을 예측한다. 제안방법의 성능 평가를 위해 디지털 팬텀을 이용해 실험한 결과, 지역적 움직임을 고려했을 때 전역적 움직임만 보정한 경우보다 종양 위치화 오류가 45% 감소하였다.