검색 : [ author: 정준현 ] (1)

고속 이산 코사인 변환을 이용한 새로운 경량 및 효율적인 콘볼루션 신경망

정준현, 배성호

http://doi.org/10.5626/JOK.2020.47.3.276

최근 개발된 경량화된 뉴럴 네트워크는 적은 개수의 모델 가중치 개수 및 낮은 연산량으로도 어느정도 높은 정확도를 유지한다. 그럼에도 불구하고, 기존 컨볼루션 뉴럴 네트워크들은 공통적으로 Pointwise Convolution (1×1 Convolution)에서 많은 가중치 개수를 가지며, 상당한 계산량을 유발한다. 본 논문은 최초로 Pointwise Convolution을 1차원 고속 이산 코사인 변환(FDCT)으로 대체하여 획기적으로 학습 가중치 값 개수를 줄였고 연산속도를 높였다. 본 논문은 구체적으로 두가지 측면, 즉 1) Block 단위에서의 DCT 적용 및 2) CNN 모델의 계층적 위치에 따른 DCT 적용을 통해 경량화를 제안한다. 실험결과, CIFAR100 이미지분류 데이터셋에 대해서 기존 MobileNet v1 모델 대비 학습 가중치 값 개수를 79.1% 줄이고 연산량을 48.3% 줄이면서 top-1 정확도는 0.8% 상승한 결과를 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr