Search : [ author: 정혜민 ] (1)

Rehearsal with Stored Latent Vectors for Incremental Learning Over GANs

Hye-Min Jeong, Dong-Wan Choi

http://doi.org/10.5626/JOK.2023.50.4.351

Unlike humans, sequential learning of multiple tasks is a difficult problem in a deep learning model. This problem is not only for discriminative models, but also for generative models, such as GAN. The Generative Replay method, which is frequently used in GAN continual learning, uses images generated by GAN provided in the previous task together for learning new tasks, but does not generate good images for CIFAR10, which is a relatively challenging task. Therefore, we can consider a rehearsal-based method that stores a portion of the real data, which cannot store a huge amount of images in limited memory because of large dimension of the real image. In this paper, we propose LactoGAN and LactoGAN+, continual learning methods that store latent vectors that are the inputs of GANs rather than storing real images, as the existing rehearsal-based approaches. As a result, more image knowledge can be stored in the same memory; thus, showing better results than the existing GAN continual learning methods.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr