디지털 라이브러리[ 검색결과 ]
검색 : [ author: 조예령 ] (1)
강화학습 기반 자율이동체의 학습 효율 향상을 위한 유사도 기반 다중 지식 전이 알고리즘
http://doi.org/10.5626/JOK.2025.52.4.310
본 논문은 강화학습 기반 자율이동체의 학습 효율을 향상시키기 위해 유사도 기반 다중 지식 전이 알고리즘(similarity-based multi-knowledge transfer, SMTRL)을 제안한다. SMTRL은 사전 학습된 모델과 현재 모델의 유사도를 계산하고, 그 유사도에 기반하여 지식 전이의 비율을 동적으로 조절하여 학습 효율을 극대화하는 방법론이다. 복잡한 환경에서 자율이동체가 단독으로 학습할 경우 많은 시간이 소요되므로, 지식 전이는 필수적이다. 하지만 사전 학습 모델과 실제 환경 간 차이가 클 경우, 학습 성능이 저하되는 부정 전이 현상이 나타날 수 있다. SMTRL은 이러한 부정 전이를 최소화하기 위해 유사도가 높은 사전 학습 모델의 지식을 반영 비율을 동적으로 조정함으로써 안정적으로 학습 속도를 가속화한다. 실험 결과, 제안된 알고리즘은 기존의 단일 지식 전이 및 전통적 강화학습 방법과 비교하여 수렴 속도 및 성능에서 우수한 결과를 나타냈다. 본 연구는 자율이동체의 효율적인 학습을 위한 새로운 지식 전이 방법을 제시하며, 복잡한 이동체 환경으로의 적용 가능성과 향후 연구 방향에 관해 논의한다.