검색 : [ author: 최혁 ] (2)

개선된 패치 매칭을 이용한 깊이 영상 기반 렌더링의 홀 채움 방법

조재형, 송원석, 최혁

http://doi.org/

깊이 영상 기반 렌더링은 깊이 정보를 활용하여 가상 시점의 영상을 생성하는 기술로 다양한 3차원 영상시스템에서 필요로 하는 기술이다. 깊이 영상 기반 렌더링에서 가장 어려운 과제는 가상 시점 영상에서 새롭게 드러나는 부분을 채우는 과정이다. 영상 인페인팅은 이 과정에서 보편적으로 활용되는 방법이다. 본 논문에서는 홀을 채우는 과정에서 발생하는 오류를 줄이고 자연스럽게 채우는 방법을 제안한다. 먼저 색상 영상의 정보와 깊이 정보를 활용하여 지역적으로 적응적 패치 크기를 선택하도록 하였다. 또한 패치 간 유사도에 따라 홀을 채우는 방법을 한 번에 채우는 경우와 부분적으로 채우는 경우로 구분하였다. 이를 통해 오류의 발생을 줄이고 깊이 영상 기반 렌더링에서 가장 큰 문제가 되는 오류의 전파를 억제하였다. 실험을 통해 제안한 방법이 기존의 방법보다 시각적으로 자연스러운 가상 시점 영상을 생성하는 것을 확인하였다.

인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법

김항태, 송원석, 최혁, 김태정

http://doi.org/

소실점(vanishing point)이란 카메라 렌즈를 통해 3차원 공간을 2차원 영상으로 투영하는 과정에서 평행한 직선들이 수렴하는 점을 의미한다. 소실점 검출은 영상 내의 정보를 이용하여 소실점의 위치를 파악하는 것을 의미하며, 영상 내 지점들의 상대적인 거리를 파악하거나 장면 전체의 3차원 구조를 파악하는데 활용된다. 일반적으로 영상 내 평행한 직선들은 인공 구조물 내에 존재하는 경우가 많으므로 직선 검출 기반 소실점 검출 기법들은 인공 구조물 내의 직선들을 찾아 이들이 수렴하는 점을 소실점으로서 검출하는 것을 목표로 한다. 이 때, 영상 내에서 직선을 검출하기 위하여 먼저 에지 검출(edge detection)을 통해 에지 픽셀을 검출하고 그 결과를 허프 변환(Hough transform)하여 직선들을 찾아낸다. 그러나 각종 텍스쳐 및 노이즈 등 여러 원인들로 인해 위 과정에서 검출된 직선들이 모두 소실점을 지나지는 않는다. 따라서 검출된 직선들로부터 소실점을 정확히 검출하기 위해서는 각 직선에 대하여 소실점을 지날 가능성에 따라 다른 가중치를 부여하는 것이 필요한데 기존의 연구들은 가중치를 동일하게 부여하거나 단순한 수준의 가중치 계산을 적용해 왔다. 본 논문에서는 소실점을 지나는 직선들은 대부분 인공 구조물내의 직선들임에 착안하여 직선에 가중치를 부여하는 새로운 방법을 제안하고 이를 이용한 소실점 검출 결과를 몇 가지 기존 방법들과 비교하였다. 그 결과, 기존 방법들에 비하여 소실점 추정 오류가 약 65% 감소하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr