Search : [ author: 한창희 ] (5)

Efficient and Privacy-Preserving Near-Duplicate Detection in Cloud Computing

Changhee Hahn, Hyung June Shin, Junbeom Hur

http://doi.org/10.5626/JOK.2017.44.10.1112

As content providers further offload content-centric services to the cloud, data retrieval over the cloud typically results in many redundant items because there is a prevalent near-duplication of content on the Internet. Simply fetching all data from the cloud severely degrades efficiency in terms of resource utilization and bandwidth, and data can be encrypted by multiple content providers under different keys to preserve privacy. Thus, locating near-duplicate data in a privacy-preserving way is highly dependent on the ability to deduplicate redundant search results and returns best matches without decrypting data. To this end, we propose an efficient near-duplicate detection scheme for encrypted data in the cloud. Our scheme has the following benefits. First, a single query is enough to locate near-duplicate data even if they are encrypted under different keys of multiple content providers. Second, storage, computation and communication costs are alleviated compared to existing schemes, while achieving the same level of search accuracy. Third, scalability is significantly improved as a result of a novel and efficient two-round detection to locate near-duplicate candidates over large quantities of data in the cloud. An experimental analysis with real-world data demonstrates the applicability of the proposed scheme to a practical cloud system. Last, the proposed scheme is an average of 70.6% faster than an existing scheme.

Constant-Size Ciphertext-Policy Attribute-Based Data Access and Outsourceable Decryption Scheme

Changhee Hahn, Junbeom Hur

http://doi.org/

Sharing data by multiple users on the public storage, e.g., the cloud, is considered to be efficient because the cloud provides on-demand computing service at anytime and anywhere. Secure data sharing is achieved by fine-grained access control. Existing symmetric and public key encryption schemes are not suitable for secure data sharing because they support 1-to-1 relationship between a ciphertext and a secret key. Attribute based encryption supports fine-grained access control, however it incurs linearly increasing ciphertexts as the number of attributes increases. Additionally, the decryption process has high computational cost so that it is not applicable in case of resource-constrained environments. In this study, we propose an efficient attribute-based secure data sharing scheme with outsourceable decryption. The proposed scheme guarantees constant-size ciphertexts irrespective of the number of attributes. In case of static attributes, the computation cost to the user is reduced by delegating approximately 95.3% of decryption operations to the more powerful storage systems, whereas 72.3% of decryption operations are outsourced in terms of dynamic attributes.

Data Block based User Authentication for Outsourced Data

Changhee Hahn, Hyunsoo Kown, Daeyeong Kim, Junbeom Hur

http://doi.org/

Recently, there has been an explosive increase in the volume of multimedia data that is available as a result of the development of multimedia technologies. More and more data is becoming available on a variety of web sites, and it has become increasingly cost prohibitive to have a single data server store and process multimedia files locally. Therefore, many service providers have been likely to outsource data to cloud storage to reduce costs. Such behavior raises one serious concern: how can data users be authenticated in a secure and efficient way? The most widely used password-based authentication methods suffer from numerous disadvantages in terms of security. Multi-factor authentication protocols based on a variety of communication channels, such as SMS, biometric, or hardware tokens, may improve security but inevitably reduce usability. To this end, we present a data block-based authentication scheme that is secure and guarantees usability in such a manner where users do nothing more than enter a password. In addition, the proposed scheme can be effectively used to revoke user rights. To the best of our knowledge, our scheme is the first data block-based authentication scheme for outsourced data that is proven to be secure without degradation in usability. An experiment was conducted using the Amazon EC2 cloud service, and the results show that the proposed scheme guarantees a nearly constant time for user authentication.

File-System-Level SSD Caching for Improving Application Launch Time

Changhee Han, Junhee Ryu, Dongeun Lee, Kyungtae Kang, Heonshik Shin

http://doi.org/

Application launch time is an important performance metric to user experience in desktop and laptop environment, which mostly depends on the performance of secondary storage. Application launch times can be reduced by utilizing solid-state drive (SSD) instead of hard disk drive (HDD). However, considering a cost-performance trade-off, utilizing SSDs as caches for slow HDDs is a practicable alternative in reducing the application launch times. We propose a new SSD caching scheme which migrates data blocks from HDDs to SSDs. Our scheme operates entirely in the file system level and does not require an extra layer for mapping SSD-cached data that is essential in most other schemes. In particular, our scheme does not incur mapping overheads that cause significant burdens on the main memory, CPU, and SSD space for mapping table. Experimental results conducted with 8 popular applications demonstrate our scheme yields 56% of performance gain in application launch, when data blocks along with metadata are migrated.

Security Enhanced Authentication Protocol in LTE With Preserving User Location Privacy

Changhee Hahn, Hyunsoo Kwon, Junbeom Hur

http://doi.org/

The number of subscribers in 4th generation mobile system has been increased rapidly. Along with that, preserving subscribers’ privacy has become a hot issue. To prevent users’ location from being revealed publicly is important more than ever. In this paper, we first show that the privacy-related problem exists in user authentication procedure in 4th generation mobile system, especially LTE. Then, we suggest an attack model which allows an adversary to trace a user, i.e. he has an ability to determine whether the user is in his observation area. Such collecting subscribers’ location by an unauthorized third party may yield severe privacy problem. To keep users’ privacy intact, we propose a modified authentication protocol in LTE. Our scheme has low computational overhead and strong secrecy so that both the security and efficiency are achieved. Finally, we prove that our scheme is secure by using the automatic verification tool ProVerif.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr