검색 : [ author: 홍대영 ] (2)

보로노이 다이어그램을 이용한 효율적 차분 프라이버시 K-평균 클러스터링 알고리즘

홍대영, 심규석

http://doi.org/10.5626/JOK.2020.47.9.879

최근 데이터에 대한 분석 결과로부터 개인 정보가 유출되는 것을 막기 위한 방법들이 연구되고 있다. 그중 차분 프라이버시(differential privacy)는 엄격하고 증명될 수 있는 개인 정보 보호를 보장하기 때문에 널리 연구되고 있는 개인 정보 보호의 표준이다. 본 논문에서는 2차원 데이터에 대하여 보로노이 다이어그램(Voronoi diagram)을 기반으로 차분 프라이버시를 보장하면서 K-평균 클러스터링 결과를 공개하기 위한 알고리즘을 제안한다. 기존 알고리즘은 클러스터링의 정확도와 수행 속도가 샘플 개수에 따라 변화하여 데이터에 적합한 샘플 개수를 선택하기 어렵다는 단점이 있으나 제안하는 알고리즘은 그러한 파라미터를 필요로 하지 않으면서 정확한 클러스터링 결과를 빠르게 계산할 수 있다. 제안하는 알고리즘의 성능에 대해 실생활 데이터를 이용한 실험을 통해 검증한다.

문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델

홍대영, 심규석

http://doi.org/10.5626/JOK.2017.44.12.1290

문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr