검색 : [ author: 홍명덕 ] (2)

C3D와 객체 기반의 움직임 정보 결합을 통한 감시시스템에서의 이상 행동 탐지

박슬기, 홍명덕, 조근식

http://doi.org/10.5626/JOK.2021.48.1.91

기존 CCTV 비디오에서 딥러닝 기반의 이상 탐지 연구는 객체의 행동 값만을 이용하여 이상을 탐지하기 때문에, 상황에 따른 객체 행동 값 추출이 어렵고, 시간 흐름에 따른 정보가 축소되는 문제점이 있었다. 또한 CCTV 비디오에서 이상의 원인은 프레임의 복잡성 등 다양한 요소와 시계열 분석에 따른 정보로 이루어져, 객체의 행동 값만을 이용하여 이상을 탐지하기에는 한계가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 객체 중심의 다양한 특징값을 사용하여 C3D에 광학 흐름을 결합한 시공간적 정보를 사용하는 새로운 딥러닝 기반의 이상 탐지 모델을 제안한다. 제안하는 이상 탐지 모델은 UCF-Crime 데이터 세트를 사용하였으며, 실험 결과 정확도에 해당하는 AUC 값이 76.44로, 기존 연구와 비교하여 빠른 객체가 있는 비디오에서 더욱 효과적으로 동작하는 것을 확인하였다. 이에 객체의 다양한 특징값과 시계열 분석에 따른 정보를 사용하는 것이 적절하다는 결론을 도출하였다.

특징점 배치의 기하학적 유사성을 이용한 GS-RANSAC

송기흔, 홍명덕, 조근식

http://doi.org/10.5626/JOK.2020.47.3.283

증강 현실은 현실의 대상 위에 증강 객체를 표시하여 정보를 제공하는 것이 목적으로, 증강 객체의 좌표를 정확하게 계산하는 것이 핵심 기능이다. 증강 객체의 좌표를 계산하기 위해서는 두 이미지 간의 호모그래피 추정법을 이용하는데, 여기서 RANSAC(Random Sample Consensus)은 두 이미지에서 추출된 특징점 쌍 중에 적합한 4쌍을 선택하는 기능을 한다. 하지만 기존의 RANSAC의 경우 추출 과정에서 선택한 특징점의 배치가 두 이미지 간에서 기하학적으로 유사한지 보장할 수 없는 문제점이 존재한다. 본 논문에서는 이 문제점을 해결하기 위해 RANSAC에서 선택하는 특징점의 배치를 검사하는 방법을 제안한다. 제안하는 방법은 이미지 위에 특징점의 사각형을 그려서 정점의 순서와 내각의 분포를 각각 검사한다. 실험 결과 제안하는 알고리즘은 기존 RANSAC보다 결함률을 8.55% 줄였으며, 증강 객체를 보다 정확한 위치에 표시하였다. 우리는 제안하는 알고리즘을 통해 증강 현실에서 증강 객체 좌표의 정확도를 개선하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr