Search : [ author: 황성일 ] (1)

Improvement of Prostate Cancer Aggressiveness Prediction Based on the Deep Learning Model Using Size Normalization and Multiple Loss Functions on Multi-parametric MR Images

Yoon Jo Kim, Julip Jung, Sung Il Hwang, Helen Hong

http://doi.org/10.5626/JOK.2023.50.10.866

Prostate cancer is the second most common cancer in men worldwide, and it is essential to predict the aggressiveness of prostate cancer because the recurrence rate and the effectiveness of treatment vary depending on the aggressiveness. This study enhances the information on small tumors by applying size normalization to predict the aggressiveness of prostate cancer in multi-parametric MR imaging. Additionally, we propose the use of multiple loss functions to distinguish tumors with different aggressiveness while having a similar visual appearance. Experimental results show that the proposed model trained with size-normalized ADC maps achieves an accuracy of 76.28%, sensitivity of 76.81%, specificity of 75.86%, and an AUC of 0.77. Moreover, compared to the tumor-centered ADC maps, size-normalized ADC maps demonstrate improved performance in tumors smaller than 1.5 cm, with an accuracy of 76.47%, sensitivity of 90.91%, and specificity of 69.57%, corresponding to a significant improvement of 17.65%, 27.27%, and 13.05% respectively.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr