디지털 라이브러리[ 검색결과 ]
검색 : [ author: Choeneum Park ] (1)
포지션 인코딩 기반 S³-Net를 이용한 한국어 기계 독해
http://doi.org/10.5626/JOK.2019.46.3.234
S³-Net은 Simple Recurrent Unit (SRU)과 자기 자신의 RNN sequence에 대하여 어텐션 가중치(attention weight)를 계산하는 Self-Matching Networks를 기반으로 기계 독해 질의 응답을 해결하는 딥 러닝 모델이다. 기계 독해 질의 응답에서 질문에 대한 답은 문맥 내에서 발생하는데, 하나의 문맥은 여러 문장으로 이뤄지기 때문에 입력 시퀀스의 길이가 길어져 성능이 저하되는 문제가 있다. 본 논문에서는 이와 같이 문맥이 길어져 성능이 저하되는 문제를 해결하기 위하여 문장 단위의 인코딩을 추가한 계층모델과, 단어 순서 정보를 확인하는 포지션 인코딩을 적용한 S³-Net을 제안한다. 실험 결과, 본 논문에서 제안한 S³-Net 모델이 한국어 기계 독해 데이터 셋에서 기존의 S²-Net보다 우수한(single test) EM 69.43%, F1 81.53%, (ensemble test) EM 71.28%, F1 82.67%의 성능을 보였다.