Digital Library[ Search Result ]
Vision-based Position Deviation Fault Injection Method for Building a Collaborative Robot Motion Fault Dataset
Donghee Yun, Dongyeon Yoo, Jungwon Lee
http://doi.org/10.5626/JOK.2023.50.9.795
The data-based fault detection method, which collects data from internal and external sensors in real-time and predicts fault, is being applied to collaborative robots, which are key facilities in smart factories. The data-based fault detection method requires a large amount of data for learning, and in particular, a large amount of data labeled as a fault state is essential. However, it is difficult to obtain large amounts of actual fault data in industrial settings. Therefore, in this study, the output of the collaborative robot fault state based on a vision sensor was analyzed and compared with the output of the normal state, and a fault injection method was proposed based on the deviation between the analyzed output signals. Collaborative robot data collected in the actual fault state could be replaced with data collected in the proposed fault injection state. The comparison of the performance of the model trained with fault injection data and trained with actual fault data confirmed that there was almost no difference, with an average of 0.97 and 0.98 accuracy, thus verifying the effectiveness of the proposed fault injection method.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr