Digital Library[ Search Result ]
An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles
Taewoo Lee, Kwangyong Lim, Guntae Bae, Hyeran Byun, Yeongwoo Choi
This paper proposes a traffic sign recognition method in real road environments. The video stream in driving environments has two different characteristics compared to a general object video stream. First, the number of traffic sign types is limited and their shapes are mostly simple. Second, the camera cannot take clear pictures in the road scenes since there are many illumination changes and weather conditions are continuously changing. In this paper, we improve a modified census transform(MCT) to extract features effectively from the road scenes that have many illumination changes. The extracted features are collected by histograms and are transformed by the dense descriptors into very high dimensional vectors. Then, the high dimensional descriptors are encoded into a low dimensional feature vector by Fisher-vector coding and Gaussian Mixture Model. The proposed method shows illumination invariant detection and recognition, and the performance is sufficient to detect and recognize traffic signs in real-time with high accuracy.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr