Digital Library[ Search Result ]
Creating Level Set Trees Using One-Class Support Vector Machines
A level set tree provides a useful representation of a multidimensional density function. Visualizing the data structure as a tree offers many advantages for data analysis and clustering. In this paper, we present a level set tree estimation algorithm for use with a set of data points. The proposed algorithm creates a level set tree from a family of level sets estimated over a whole range of levels from zero to infinity. Instead of estimating density function then thresholding, we directly estimate the density level sets using one-class support vector machines (OC-SVMs). The level set estimation is facilitated by the OC-SVM solution path algorithm. We demonstrate the proposed level set tree algorithm on benchmark data sets.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr