검색 : [ author: Ha-Young Kim ] (3)

방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출

이희재, 김하영, 이다빛, 이상국

http://doi.org/10.5626/JOK.2017.44.7.692

LBP기반 특징점 기술자를 이용한 얼굴검출은 얼굴의 형태정보 및 눈, 코, 입과 같은 얼굴 요소들 간 공간정보를 표현할 수 없는 문제가 있다. 이러한 문제를 해결하기 위해 선행 연구들은 얼굴 영상을 다수개의 사각형 부분영역들로 분할하였다. 하지만, 연구마다 서로 다른 개수와 크기로 부분 영역을 분할하였기 때문에 실험에 사용하는 데이터베이스에 적합한 부분 영역의 분할 기준이 모호하며, 부분 영역의 수에 비례하여 LBP 히스토그램 차원이 증가되고, 부분 영역의 개수가 증가함에 따라 얼굴의 방향 회전에 대한 민감도가 크게 증가한다. 본 논문은 LBP기반 특징점 기술자의 방향 회전 문제와 특징점 차원의 수 문제를 해결할 수 있는 새로운 부분 영역 분할 방법을 제안한다. 실험 결과, 제안하는 방법은 방향 회전된 단일 얼굴 영상에서 99.0278%의 검출 정확도를 보였다.

동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴

박상훈, 김하영, 이다빛, 이상국

http://doi.org/10.5626/JOK.2017.44.6.587

최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetⅣa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.

조명 변화 환경에서 얼굴 인식을 위한 Non-Alpha Weberface 및 히스토그램 평활화 기반 얼굴 표현

김하영, 이희재, 이상국

http://doi.org/

얼굴 외형은 조명의 영향을 크게 받기 때문에 조명 변화는 얼굴 인식 시스템의 성능을 저하시키는 요인 중 하나이다. 본 논문에서는 non-alpha Weberface(non-alpha WF)와 히스토그램 평활화를 결합하여 조명 변화에 강건한 얼굴 표현 방법을 제안한다. 먼저, 입력 얼굴 영상에 대해 명암 대비 조절 파라미터를 적용하지 않은 non-alpha WF를 생성한다. 이후, non-alpha WF의 히스토그램 분포를 전역적으로 균일하게 하고 명암 대비를 향상시키기 위해 히스토그램 평활화를 수행한다. 제안하는 방법을 통해 전처리된 얼굴 영상으로부터 저차원 판별 특징을 추출하기 위해 (2D)²PCA를 적용한다. Extended Yale B 및 CMU PIE 얼굴 데이터베이스에 대해 실험한 결과, 제안하는 방법으로 각각 93.31%와 97.25%의 평균 인식률을 얻었다. 또한, 제안하는 방법은 기존 WF뿐만 아니라 여러 조명 처리 방법들과 비교하여 향상된 인식 성능을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr