Digital Library[ Search Result ]
Confidence Value based Large Scale OWL Horst Ontology Reasoning
Wan-Gon Lee, Hyun-Kyu Park, Batselem Jagvaral, Young-Tack Park
Several machine learning techniques are able to automatically populate ontology data from web sources. Also the interest for large scale ontology reasoning is increasing. However, there is a problem leading to the speculative result to imply uncertainties. Hence, there is a need to consider the reliability problems of various data obtained from the web. Currently, large scale ontology reasoning methods based on the trust value is required because the inference-based reliability of quantitative ontology is insufficient. In this study, we proposed a large scale OWL Horst reasoning method based on a confidence value using spark, a distributed in-memory framework. It describes a method for integrating the confidence value of duplicated data. In addition, it explains a distributed parallel heuristic algorithm to solve the problem of degrading the performance of the inference. In order to evaluate the performance of reasoning methods based on the confidence value, the experiment was conducted using LUBM3000. The experiment results showed that our approach could perform reasoning twice faster than existing reasoning systems like WebPIE.
Ontology and Sequential Rule Based Streaming Media Event Recognition
Chi-Seung Soh, Hyun-Kyu Park, Young-Tack Park
As the number of various types of media data such as UCC (User Created Contents) increases, research is actively being carried out in many different fields so as to provide meaningful media services. Amidst these studies, a semantic web-based media classification approach has been proposed; however, it encounters some limitations in video classification because of its underlying ontology derived from meta-information such as video tag and title. In this paper, we define recognized objects in a video and activity that is composed of video objects in a shot, and introduce a reasoning approach based on description logic. We define sequential rules for a sequence of shots in a video and describe how to classify it. For processing the large amount of increasing media data, we utilize Spark streaming, and a distributed in-memory big data processing framework, and describe how to classify media data in parallel. To evaluate the efficiency of the proposed approach, we conducted an experiment using a large amount of media ontology extracted from Youtube videos.
Ontology Modeling and Rule-based Reasoning for Automatic Classification of Personal Media
Hyun-Kyu Park, Chi-Seung So, Young-Tack Park
Recently personal media were produced in a variety of ways as a lot of smart devices have been spread and services using these data have been desired. Therefore, research has been actively conducted for the media analysis and recognition technology and we can recognize the meaningful object from the media. The system using the media ontology has the disadvantage that can’t classify the media appearing in the video because of the use of a video title, tags, and script information. In this paper, we propose a system to automatically classify video using the objects shown in the media data. To do this, we use a description logic-based reasoning and a rule-based inference for event processing which may vary in order. Description logic-based reasoning system proposed in this paper represents the relation of the objects in the media as activity ontology. We describe how to another rule-based reasoning system defines an event according to the order of the inference activity and order based reasoning system automatically classify the appropriate event to the category. To evaluate the efficiency of the proposed approach, we conducted an experiment using the media data classified as a valid category by the analysis of the Youtube video.
Spark based Scalable RDFS Ontology Reasoning over Big Triples with Confidence Values
Hyun-Kyu Park, Wan-Gon Lee, Batselem Jagvaral, Young-Tack Park
Recently, due to the development of the Internet and electronic devices, there has been an enormous increase in the amount of available knowledge and information. As this growth has proceeded, studies on large-scale ontological reasoning have been actively carried out. In general, a machine learning program or knowledge engineer measures and provides a degree of confidence for each triple in a large ontology. Yet, the collected ontology data contains specific uncertainty and reasoning such data can cause vagueness in reasoning results. In order to solve the uncertainty issue, we propose an RDFS reasoning approach that utilizes confidence values indicating degrees of uncertainty in the collected data. Unlike conventional reasoning approaches that have not taken into account data uncertainty, by using the in-memory based cluster computing framework Spark, our approach computes confidence values in the data inferred through RDFS-based reasoning by applying methods for uncertainty estimating. As a result, the computed confidence values represent the uncertainty in the inferred data. To evaluate our approach, ontology reasoning was carried out over the LUBM standard benchmark data set with addition arbitrary confidence values to ontology triples. Experimental results indicated that the proposed system is capable of running over the largest data set LUBM3000 in 1179 seconds inferring 350K triples.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr