Search : [ author: Hyunmook Cha ] (2)

Generating Relation Descriptions with Large Language Model for Link Prediction

Hyunmook Cha, Youngjoong Ko

http://doi.org/10.5626/JOK.2024.51.10.908

The Knowledge Graph is a network consisting of entities and the relations between them. It is used for various natural language processing tasks. One specific task related to the Knowledge Graph is Knowledge Graph Completion, which involves reasoning with known facts in the graph and automatically inferring missing links. In order to tackle this task, studies have been conducted on both link prediction and relation prediction. Recently, there has been significant interest in a dual-encoder architecture that utilizes textual information. However, the dataset for link prediction only provides descriptions for entities, not for relations. As a result, the model heavily relies on descriptions for entities. To address this issue, we utilized a large language model called GPT-3.5-turbo to generate relation descriptions. This allows the baseline model to be trained with more comprehensive relation information. Moreover, the relation descriptions generated by our proposed method are expected to improve the performance of other language model-based link prediction models. The evaluation results for link prediction demonstrate that our proposed method outperforms the baseline model on various datasets, including Korean ConceptNet, WN18RR, FB15k-237, and YAGO3-10. Specifically, we observed improvements of 0.34%p, 0.11%p, 0.12%p, and 0.41%p in terms of Mean Reciprocal Rank (MRR), respecitvely.

Task-Oriented Dialogue System Using a Fusion Module between Knowledge Graphs

Jinyoung Kim, Hyunmook Cha, Youngjoong Ko

http://doi.org/10.5626/JOK.2024.51.10.882

The field of Task-Oriented Dialogue Systems focuses on using natural language processing to assist users in achieving specific tasks through conversation. Recently, transformer-based pre-trained language models have been employed to enhance performances of task-oriented dialogue systems. This paper proposes a response generation model based on Graph Attention Networks (GAT) to integrate external knowledge data into transformer-based language models for more specialized responses in dialogue systems. Additionally, we extend this research to incorporate information from multiple graphs, leveraging information from more than two graphs. We also collected and refined dialogue data based on music domain knowledge base to evaluate the proposed model. The collected dialogue dataset consisted of 2,076 dialogues and 226,823 triples. In experiments, the proposed model showed a performance improvement of 13.83%p in ROUGE-1, 8.26%p in ROUGE-2, and 13.5%p in ROUGE-L compared to the baseline KoBART model on the proposed dialogue dataset.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr