Digital Library[ Search Result ]
Ensemble Modeling with Convolutional Neural Networks for Application in Visual Object Tracking
Minji Kim, Ilchae Jung, Bohyung Han
http://doi.org/10.5626/JOK.2021.48.2.211
In the area of computer vision, visual object tracking aims to estimate the status of a target object from an input video stream, which can be broadly applicable to industries such as surveillance and the military. Recently, deep learning-based tracking algorithms have gone through significant improvements by using tracking-by-detection or template-based approach. However, these approaches are still suffering from inherent limitations caused by each strategy. In this paper, we propose a novel method to model ensemble trackers by fusing the two strategies, tracking-by-detection and template-based approach. We report significantly enhanced performance on widely adopted visual object tracking benchmarks, OTB100, UAV123, and LaSOT.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr