Digital Library[ Search Result ]
A New Cache Replacement Policy for Improving Last Level Cache Performance
Cong Thuan Do, Dong Oh Son, Jong Myon Kim, Cheol Hong Kim
Cache replacement algorithms have been developed in order to reduce miss counts. In modern processors, the performance gap between the processor and main memory has been increasing, creating a more important role for cache replacement policies. The Least Recently Used (LRU) policy is one of the most common policies used in modern processors. However, recent research has shown that the performance gap between the LRU and the theoretical optimal replacement algorithm (OPT) is large. Although LRU replacement has been proven to be adequate over and over again, the OPT/LRU performance gap is continuously widening as the cache associativity becomes large. In this study, we observed that there is a potential chance to improve cache performance based on existing LRU mechanisms. We propose a method that enhances the performance of the LRU replacement algorithm based on the access proportion among the lines in a cache set during a period of two successive replacement actions that make the final replacement action. Our experimental results reveals that the proposed method reduced the average miss rate of the baseline 512KB L2 cache by 15 percent when compared to conventional LRU. In addition, the performance of the processor that applied our proposed cache replacement policy improved by 4.7 percent over LRU, on average.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr