Digital Library[ Search Result ]
Aspect Summarization for Product Reviews based on Attention-based Aspect Extraction
Jun-Nyeong Jeong, Sang-Young Kim, Seong-Tae Kim, Jeong-Jae Lee, Yuchul Jung
http://doi.org/10.5626/JOK.2021.48.12.1318
Recently, document summaries such as articles and papers through machine learning and summary-related research on online reviews are active. In this study, unlike the existing simply summarizing content, a technique was developed for generating an aspect summary by considering various aspects of product reviews. By refining the earphone product review data crawled to build the learning data, 40,000 reviews were obtained. Moreover, we manually constructed 4,000 aspect summaries to be used for our training and evaluation tasks. In particular, we proposed a model that could summarize aspects using only text data using the aspect-based word expansion technique (ABAE). To judge the effectiveness of the proposed technique, we performed experiments according to the use of words related to aspects and the masking ratio during learning. As a result, it was confirmed that the model that randomly masked 25% of the words related to the aspect showed the highest performance, and during verification, the ROUGE was 0.696, and the BERTScore was 0.879.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr