검색 : [ author: June Ahn ] (1)

정보검색기반 결함위치식별 기술의 성능 향상을 위한 버그리포트 품질 예측

김미수, 안준, 이은석

http://doi.org/10.5626/JOK.2017.44.8.832

버그리포트는 소프트웨어의 유지보수 단계에서 발생한 결함 정보를 담고 있는 문서로서 개발자가 해당 결함을 수정하기 위해 필수적인 정보이다. 이 때 개발자가 버그리포트를 해결하기 위해 결함을 추적하는 시간을 단축시키기 위한 정보검색기반 결함위치식별 기술들이 제안되었다. 그러나 정보검색에 유용하지 못한 내용들로 작성된 낮은 품질의 버그리포트가 등록 될 경우 결함위치식별 성능이 크게 저하된다. 본 논문에서는 낮은 품질의 버그리포트를 선별하기 위한 품질 예측 방법을 제안한다. 이 과정에서 버그리포트의 쿼리로써의 품질 요소를 정의하고, 기계학습을 사용하여 품질을 예측한다. 제안 방법을 오픈소스 프로젝트에 적용하여 기존 품질 예측 기술 대비 평균 6.62% 더 정확하게 예측하였다. 또한 기존 결함위치식별 기술에 제안 예측 기술과 자동 쿼리 재구성 기술을 함께 적용한 경우 결함위치식별 정확도를 1.3% 향상시켜, 제안 품질 예측 기술이 정보검색기반 결함위치식별 기술의 성능 향상을 도울 수 있음을 확인하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr