검색 : [ author: Ki-Seong Lee ] (2)

딥 러닝을 이용한 버그 담당자 자동 배정 연구

이선로, 김혜민, 이찬근, 이기성

http://doi.org/10.5626/JOK.2017.44.11.1156

기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.

모듈의 의존관계와 저자 엔트로피를 이용한 소프트웨어 모듈-뷰 복원

김정민, 이찬근, 이기성

http://doi.org/

본 연구에서 우리는 모듈의 의존관계와 저자 엔트로피(Author Entropy) 정보를 이용하여 소프트웨어 모듈-뷰를 복원하는 새로운 소프트웨어 클러스터링 기법을 제안한다. 해당 기법은 우선 구조적 및 논리적 의존관계 정보를 기준으로 소프트웨어 모듈을 클러스터링한 후, 모듈 별 저자 엔트로피를 이용하여 일부 선택된 모듈을 클러스터 결과로부터 이전한다. 제안된 기법의 평가를 위해 참(ground-truth) 모듈-뷰가 알려진 오픈소스 프로젝트들에 적용하여 MoJoFM 값을 구하였다. 이와 함께 기존에 연구된 모듈-뷰 복원 기법들의 MoJoFM값과 비교하여, 제안된 기법이 소프트웨어 모듈-뷰 복원에 보다 효과적임을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr