디지털 라이브러리[ 검색결과 ]
검색 : [ author: Kun-Hui Lee ] (1)
PrefixLM에 기반한 한국어 텍스트 요약
http://doi.org/10.5626/JOK.2022.49.6.475
본 논문에서는 거대 언어 모델 중 하나인 T5의 인코더-디코더 구조 대비 절반의 크기를 가지는 PrefixLM 구조의 한국어 모델을 학습하여 성능을 확인한다. PrefixLM 모델은 입력과 출력 시퀀스가 단일 시퀀스로 연결되어 트랜스포머 블록에 함께 입력된다. 이때 어텐션 내부 연산 시 사용되는 어텐션 마스크의 변형을 통해 단일 트랜스포머 블록에서 입력 시퀀스 부분은 양방향 어텐션, 출력 시퀀스 부분은 단방향 어텐션이 이루어지도록 조정된다. 이를 통해 인코더와 디코더 역할을 한 레이어에서 수행할 수 있게 된다. 소규모 데이터로 한국어 모델을 여러 방식으로 학습한다. 자연어 처리에서 중요한 태스크 중 하나인 텍스트 생성 요약 태스크에서 기반 모델, 위치 인코딩 방식 등에 따른 성능 차이를 확인한다. BART, T5와 비교하여 각각 2.17, 2.78점의 성능 향상을 보여 PrefixLM 구조가 한국어에서도 충분히 유효함을 보인다.