디지털 라이브러리[ 검색결과 ]
검색 : [ author: Kwanwoo Kim ] (1)
독소 조항 분류를 위한 딥러닝 기반 텍스트 분류 모델
http://doi.org/10.5626/JOK.2020.47.11.1054
여러 기업들은 과제를 수행하기에 앞서 계약서를 바탕으로 계약을 체결한다. 하지만 계약을 체결하기 전에 계약서 내의 독소 조항을 발견하지 못하고 계약을 진행하게 될 경우 여러 문제가 발생할 수 있다. 이를 방지하기 위하여 전문가를 통해 계약서를 검토하는 과정이 수행되지만 많은 시간과 비용을 요구한다. 만약 계약서의 사전 검토를 통해 독소 조항을 판별 할 수 있는 시스템이 존재한다면, 계약서를 검토하는 과정에서 발생하는 높은 비용과 시간을 절약할 수 있다. 따라서 본 논문에서는 계약서 내의 각 단락을 입력으로 하여 독소 조항 여부를 분류하는 텍스트 분류 모델을 제안한다. 제안 모델의 분류 성능을 높이기 위하여 단락 내 문장과 분류할 클래스 사이의 유사도 정보를 바탕으로 문장 별 중요도를 계산하고 이를 각 문장에 반영하여 분류를 수행한다. 제안 모델은 실제 계약서 데이터를 사용한 실험에서 F1 점수 84.51%p의 성능을 보였으며 기존 텍스트 분류 모델과의 성능 비교를 위해 WOS-5736 데이터셋을 이용한 실험에서 F1 점수 93.64%p로 가장 높은 성능을 보였다.