Search : [ author: Kyuchan Cho ] (1)

Analysis of Vulnerabilities in Autonomous Driving Environments through Physical Adversarial Attacks Incorporating Natural Elements

Kyuchan Cho, Woosang Im, Sooyong Jeong, Hyunil Kim, Changho Seo

http://doi.org/10.5626/JOK.2024.51.10.935

Advancements in artificial intelligence technology have significantly impacted the field of computer vision. Concurrently, numerous vulnerabilities related to adversarial attacks, which are techniques designed to force models into misclassification, have been discovered. In particular, adversarial attacks such as physical adversarial attacks in the real world, pose a serious threat to autonomous vehicle systems. These attacks include artificially created attacks such as adversarial patches and attacks that exploit natural elements to cause misclassification. A common scenario in autonomous driving environments involves obstruction of traffic signs by natural elements such as fallen leaves or snow. These elements do not remain stationary. They can cause misclassification even in fleeting moments, highlighting a critical vulnerability. Therefore, this study investigated adversarial patch attacks based on natural elements, proposing fallen leaves as a natural adversarial element. Specifically, it reviewed current trends in adversarial attack research, presented an experimental environment based on natural elements, and analyzed experimental results to assess vulnerabilities posed by fallen leaves in physical environments to autonomous vehicles.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr