Search : [ author: Maengsik Choi ] (2)

Construction of Korean Knowledge Base Based on Machine Learning from Wikipedia

Seok-won Jeong, Maengsik Choi, Harksoo Kim

http://doi.org/

The performance of many natural language processing applications depends on the knowledge base as a major resource. WordNet, YAGO, Cyc, and BabelNet have been extensively used as knowledge bases in English. In this paper, we propose a method to construct a YAGO-style knowledge base automatically for Korean (hereafter, K-YAGO) from Wikipedia and YAGO. The proposed system constructs an initial K-YAGO simply by matching YAGO to info-boxes in Wikipedia. Then, the initial K-YAGO is expanded through the use of a machine learning technique. Experiments with the initial K-YAGO shows that the proposed system has a precision of 0.9642. In the experiments with the expanded part of K-YAGO, an accuracy of 0.9468 was achieved with an average macro F1-measure of 0.7596.

One-Class Classification Model Based on Lexical Information and Syntactic Patterns

Hyeon-gu Lee, Maengsik Choi, Harksoo Kim

http://doi.org/

Relation extraction is an important information extraction technique that can be widely used in areas such as question-answering and knowledge population. Previous studies on relation extraction have been based on supervised machine learning models that need a large amount of training data manually annotated with relation categories. Recently, to reduce the manual annotation efforts for constructing training data, distant supervision methods have been proposed. However, these methods suffer from a drawback: it is difficult to use these methods for collecting negative training data that are necessary for resolving classification problems. To overcome this drawback, we propose a one-class classification model that can be trained without using negative data. The proposed model determines whether an input data item is included in an inner category by using a similarity measure based on lexical information and syntactic patterns in a vector space. In the experiments conducted in this study, the proposed model showed higher performance (an F1-score of 0.6509 and an accuracy of 0.6833) than a representative one-class classification model, one-class SVM(Support Vector Machine).


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr