검색 : [ author: Maengsik Choi ] (2)

위키백과로부터 기계학습 기반 한국어 지식베이스 구축

정석원, 최맹식, 김학수

http://doi.org/

지식베이스는 자연어 처리 기반의 다양한 응용 시스템 성능에 영향을 미치는 중요한 요소이다. 영어권에서는 WordNet, YAGO, Cyc, BabelNet과 같은 지식베이스들이 널리 사용되고 있다. 본 논문에서는 위키백과와 YAGO로부터 YAGO 형식의 한국어 지식베이스(이하 K-YAGO)를 자동 구축하는 방법을 제안한다. 제안 시스템은 YAGO와 위키백과 인포박스간의 간단한 매칭을 통해 초기 K-YAGO를 구축한 뒤, 기계학습을 이용하여 초기 K-YAGO를 확장한다. 실험 결과, 제안 시스템은 초기 K-YAGO 구축 실험에서 0.9642의 신뢰도를 보였고, K-YAGO 확장 실험에서 0.9468의 정확도와 0.7596의 매크로 F1 척도를 보였다.

어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델

이현구, 최맹식, 김학수

http://doi.org/

관계 추출은 질의응답 및 지식확장 등에 널리 사용될 수 있는 주요 정보추출 기술이다. 정보추출에 관한 기존 연구들은 관계 범주가 수동으로 부착된 대용량의 학습 데이터를 필요로 하는 지도 학습모델을 기반으로 이루어져 왔다. 최근에는 학습 데이터 구축을 위한 인간의 노력을 줄이기 위해 원거리감독법이 제안되었다. 그러나 원거리 감독법은 분류 문제를 해결하는데 필수적인 부정 학습 데이터를 수집하기 어렵다는 단점이 있다. 이러한 원거리 감독법의 단점을 극복하기 위해 본 논문에서는 부정 데이터없이 학습이 가능한 단일 클래스 분류 모델을 제안한다. 입력 데이터로부터 긍정 데이터를 선별하기 위해서 제안 모델은 벡터 공간 상에서 어휘 정보와 구문 패턴에 기반한 유사도 척도를 사용하여 입력 데이터가 내부 범주에 속하는지 그렇지 않은지 판단한다. 실험에서 제안 모델은 대표적인 단일 클래스 분류 모델인 One-class SVM보다 높은 성능(0.6509 F1-점수, 0.6833 정밀도)을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr