검색 : [ author: MyeongOh Lee ] (1)

Channel Attention과 그룹 컨볼루션을 이용한 효율적인 얼굴 감정인식 CNN

이명오, 윤의녕, 고승현, 조근식

http://doi.org/10.5626/JOK.2019.46.12.1241

최근 얼굴 표정에서 감정을 인식하기 위한 문제에서 컨볼루션 신경망을 이용한 연구가 활발히 진행되고 있다. 본 논문에서는 사람의 얼굴 표정에서 나타나는 감정을 인식하기 위해 사용하는 딥 컨볼루션 신경망의 모델 복잡도(Complexity) 문제점을 해결한 효율적인 컨볼루션 신경망을 제안한다. 본 논문에서는 모델의 복잡도를 줄이기 위해 그룹 컨볼루션, 깊이별 분리 컨볼루션을 사용하여 파라미터 수와 연산량을 감소시키고 특징 연결을 위한 Skip Connection과 Channel Attention을 사용하여 특징의 재사용성과 채널 정보를 강화하였다. 제안하는 모델의 학습 파라미터 개수는 0.39 M(Million), 0.41 M으로 기존 모델에 비해 4배 이상 적은 수의 파라미터를 사용하여 FER2013, RAF-single 데이터셋에서 각각 70.32%, 85.23%의 정확도를 달성하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr