Digital Library[ Search Result ]
Multiview Data Clustering by using Adaptive Spectral Co-clustering
Jeong-Woo Son, Junekey Jeon, Sang-Yun Lee, Sun-Joong Kim
In this paper, we introduced the adaptive spectral co-clustering, a spectral clustering for multiview data, especially data with more than three views. In the adaptive spectral co-clustering, the performance is improved by sharing information from diverse views. For the efficiency in information sharing, a co-training approach is adopted. In the co-training step, a set of parameters are estimated to make all views in data maximally independent, and then, information is shared with respect to estimated parameters. This co-training step increases the efficiency of information sharing comparing with ordinary feature concatenation and co-training methods that assume the independence among views. The adaptive spectral co-clustering was evaluated with synthetic dataset and multi lingual document dataset. The experimental results indicated the efficiency of the adaptive spectral co-clustering with the performances in every iterations and similarity matrix generated with information sharing.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr