Search : [ author: Se-Hoon Kim ] (2)

Analysis of Limits in Applying AP-QoS-based Wi-Fi Slicing for Real-Time Systems

Jin Hyun Kim, Hyonyoung Choi, Gangjin Kim, Yundo Choi, Tae-Won Ban, Se-Hoon Kim

http://doi.org/10.5626/JOK.2021.48.6.723

Network slicing is a new network technology that guarantees the quality of network services according to application services or user’s types. Wi-Fi, IEEE 802.11-based LAN, is the mostly popularly used short-range wireless network and has been continually attracting more and more from users. Recently, the use of Wi-Fi by safety critical IoT devices, such as medical devices, has been drastically increasing. Moreover, enterprises require network slicing of Wi-Fi to introduce the provision of prioritized QoS of Wi-Fi depending on the service type of customer. This paper presents the analysis of the limits and difficulties in applying AP-QoS-based network slicing for hard real-time systems that demand temporal deterministic streaming services. In this paper, we have defined a formal framework to analyze QoS-providing IEEE 802.11e Enhanced Distributed Coordination Access and provide the worst-case streaming scenarios and thereby demonstrated why the temporal determinism of network streaming is broken. In addition, simulation results of AP-QoS-based network slicing using NS-3 are presented to show the limits and difficulties of the network slicing. Moreover, we present Wi-Fi network slicing techniques based on EDCA of AP-QoS for real-time systems through our technical report referenced in this paper.

ILP-based Schedule Synthesis of Time-Sensitive Networking

Jin Hyun Kim, Hyonyoung Choi, Kyong Hoon Kim, Insup Lee, Se-Hoon Kim

http://doi.org/10.5626/JOK.2021.48.6.595

IEEE 802.1Qbv Time Sensitive Network (TSN), the latest real-time Ethernet standard, is a network designed to guarantee the temporal accuracy of streams. TSN is an Ethernet-based network system that is actively being developed for the factory automation and automobile network systems. TSN controls the flow of data streams based on schedules generated statically off-line to satisfy end-to-end delay or jitter requirements. However, the generation of TSN schedules is an NP-hard problem; because of this, constraint solving techniques, such as SMT (Satisfiability Modulo Theory) and ILP (Integer Linear Programming), have mainly been proposed as solutions to this problem. This paper presents a new approach using a heuristic greedy and incremental algorithm working with ILP to decrease the complexity of computing schedules and improve the schedule generation performance in computing TSN schedules. Finally, we compare our proposed method with the existing SMT solver approach to show the performance of our approach.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr