Digital Library[ Search Result ]
Application of Improved Variational Recurrent Auto-Encoder for Korean Sentence Generation
Sangchul Hahn, Seokjin Hong, Heeyoul Choi
http://doi.org/10.5626/JOK.2018.45.2.157
Due to the revolutionary advances in deep learning, performance of pattern recognition has increased significantly in many applications like speech recognition and image recognition, and some systems outperform human-level intelligence in specific domains. Unlike pattern recognition, in this paper, we focus on generating Korean sentences based on a few Korean sentences. We apply variational recurrent auto-encoder (VRAE) and modify the model considering some characteristics of Korean sentences. To reduce the number of words in the model, we apply a word spacing model. Also, there are many Korean sentences which have the same meaning but different word order, even without subjects or objects; therefore we change the unidirectional encoder of VRAE into a bidirectional encoder. In addition, we apply an interpolation method on the encoded vectors from the given sentences, so that we can generate new sentences which are similar to the given sentences. In experiments, we confirm that our proposed method generates better sentences which are semantically more similar to the given sentences.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr