검색 : [ author: Soyeon Lee ] (1)

기계학습을 활용한 화합물의 약인성 간 손상 예측 방법 연구

이소연, 유선용

http://doi.org/10.5626/JOK.2023.50.9.777

약인성 간 손상은 임상시험용 의약품이 시장에 유통되는 것을 막는 요인 중 하나이다. 따라서 사전에 화합물의 약인성 간 손상 위험 평가가 필요하다. 안전성을 평가하기 위해 생체 내 (in vivo) 및 시험관 내 시험 방법(in vitro)이 사용되지만 이들은 시간과 비용이 많이 든다. 본 연구에서는 위의 문제를 극복하고자 random forest, light gradient boosting machine, logistic regression 모델을 제안한다. 모델은 입력으로 화합물의 분자 구조와 물리화학적 특징을 사용하고 출력으로 약인성 간 손상을 예측한다. 최적의 모델은 평가 지표에서 전반적으로 좋은 성능을 보인 random forest였다. 본 연구에서 제안된 모델은 신약 후보물질의 잠재적인 간 손상을 미리 파악함으로써 신약 개발 과정에 도움을 줄 수 있을 것으로 기대된다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr