디지털 라이브러리[ 검색결과 ]
뉴럴-심볼릭 순위화 모델 기반 2단계 단락 재순위화 모델
http://doi.org/10.5626/JOK.2021.48.5.501
자연어 질의응답 시스템과 관련한 이전의 연구들은 주어진 질문과 단락으로부터 정확한 정답을 추출하는 문제에 초점을 맞추고 있다. 그러나, 기계독해에서 오픈 도메인 질의응답으로 문제를 확장하였을 때, 정답이 포함된 단락을 잘 찾는 것이 기계독해 못지않은 중요한 요소이다. DrQA에서는 초기 검색 단계를 포함하여 질의응답을 하였을 때 Exact Match@Top1 성능이 69.5%에서 27.1%로 하락했다고 평가하였다. 본 논문에서는 질의응답 시스템 성능 향상을 위해 2단계 단락 재순위화 모델을 제안한다. 2단계 단락 재순위화 모델은 심볼릭 순위화 모델과 뉴럴 순위화 모델의 결과를 통합하여 다시 재순위화하는 모델이다. 심볼릭 순위화 모델은 CatBoost 알고리즘과 질문과 단락 간의 자질을 기반으로 단락을 순위화 하고, 뉴럴 순위화 모델은 한국어 딥러닝 언어모델(KorBERT)을 사후학습하여 순위화하였다. 2단계 모델은 뉴럴 리그레션 모델에 기반하여 순위화하였다. 본 논문에서는 특징이 다른 순위화 모델을 결합하여 성능을 극대화하였고, 최종적으로 제안한 모델은 1,000건의 질문을 평가하였을 때 MRR 기준 85.8%과 BinaryRecall@Top1기준 82.2%의 성능을 보였고, 각 성능은 베이스라인 모델보다 17.3%(MRR), 22.3%(BR@Top1)이 향상되었다.
도메인 적응 기술을 이용한 한국어 의미역 인식
높은 성능의 의미역 인식 시스템의 개발을 위해서는 대상 도메인에 대한 대량의 수동 태깅 학습 데이터가 필요하다. 그러나 충분한 크기의 의미역 인식용 학습 데이터는 오직 소수의 도메인에서만 존재한다. 소스 도메인의 시스템을 상대적으로 매우 작은 학습 데이터를 가진 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 이러한 도메인 변경에서의 성능 하락 현상을 최소화하기 위해 본 논문에서는 2 가지 기법을 제시한다. 첫째, 도메인 적응 방법론의 하나인 Prior 모델에 기반하여 개발된 한국어 의미역 인식 시스템을 위한 도메인 적응 알고리즘을 제안한다. 둘째, 크기가 작은 타겟 도메인 데이터를 이용할 때 데이터 희귀 문제의 감소를 위해 소스 도메인 데이터 이용시 보다 단순화된 형태소 태그와 구문 태그 자질을 사용할 것을 제안한다. 뉴스 도메인에서 개발된 시스템의 위키피디아 도메인에의 적용과 관련하여 다른 연구의 도메인 적응 기술과 우리가 제안한 방법을 비교 실험하였다. 우리의 두 가지 방법을 같이 사용할 때 더 높은 성능을 달성하는 것을 관찰하였다. 우리 시스템은 F1-score 64.3% 성능으로서 기존의 다른 도메인 적응 기술들과 비교하여 2.4~3.1% 더 높은 성능을 가지는 것으로 관찰되었다.