검색 : [ author: Yongjun Kim ] (2)

트랜스포머 기반 한국어 텍스트 요약 모델의 순차적 문맥 학습 영향성 분석

김수빈, 김용준, 방준성

http://doi.org/10.5626/JOK.2021.48.10.1097

텍스트 요약 기술은 전체 텍스트 내용이 가지는 의미를 유지하면서도 텍스트의 길이를 줄여, 정보 과적재 문제를 해결하고 독자의 빠른 정보 소비를 돕는다. 이를 위해 트랜스포머 기반의 영어 텍스트 요약 모델에 대한 연구가 활발히 진행되고 있다. 최근에는 RNN 기반의 인코더를 추가하여 고정된 어순을 갖는 영어의 특성을 반영한 추상 텍스트 요약 모델이 제안되기도 했다. 본 논문은 영어보다 자유로운 어순을 갖는 한국어에 대해 RNN 기반의 인코더를 이용하여, 텍스트 추상 요약 모델에 순차적 문맥 학습이 어떠한 영향을 미치는지 연구하였다. 직접 수집한 한국어 기사에 대해 트랜스포머 기반 모델과 기존 트랜스포머에 RNN 기반 인코더를 추가한 모델을 학습하여 제목 생성 및 기사 내용 요약 성능을 분석하였다. 실험 결과, RNN 기반의 인코더를 추가한 모델이 더 높은 성능을 보였으며, 한국어 텍스트의 추상 요약 수행 시, 순차적인 문맥 학습이 필요함을 확인하였다.

지역 차분 프라이버시 기반 허브 그룹화를 이용한 비동률성 네트워크 배포

김용준, 박석

http://doi.org/10.5626/JOK.2020.47.6.603

무선 인터넷의 발전과 스마트폰의 대중화에 따라 많은 사람들이 온라인을 통해 사람들과의 관계를 맺는 소셜 네트워크 서비스를 사용하고 있다. 소셜 네트워크 서비스에서 발생하는 개인 데이터는 높은 가치를 지니고 있지만 동시에 민감한 개인정보를 담고 있어 프라이버시 침해가 발생할 가능성이 있다. 개인정보침해를 방지함과 동시에 소셜 네트워크 상의 데이터를 분석하기 위하여 기존 연구는 원본 네트워크 데이터와 유사한 가상 데이터를 생성하거나, 사용자 정보를 익명화하여 배포하는 기법을 제시하였다. 그러나 기존 기법들은 소셜 네트워크 상의 사용자들이 맺는 관계에 의해 형성되는 그래프의 특성을 고려하지 않아 프라이버시와 데이터 유용성 모두에서 약점을 지니고 있다. 본 논문에서는 소셜 네트워크의 그래프 상의 특성을 반영함과 동시에 신뢰할 수 있는 써드파티가 아닌 데이터를 제공하는 개인 수준에서 직접 데이터 보호 기법을 적용하여 제공하는, 프라이버시가 보호된 소셜 네트워크 데이터 배포 기법을 제안한다. 우리는 실제 네트워크 데이터를 사용한 실험을 통하여 제안 기법이 기존의 차분 프라이버시를 적용한 기법들보다 성능이 향상됨을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr