Digital Library[ Search Result ]
Techniques to Guarantee Real-Time Fault Recovery in Spark Streaming Based Cloud System
Jungho Kim, Daedong Park, Sangwook Kim, Yongshik Moon, Seongsoo Hong
In a real-time cloud environment, the data analysis framework plays a pivotal role. Spark Streaming meets most real-time requirements among existing frameworks. However, the framework does not meet the second scale real-time fault recovery requirement. Spark Streaming fault recovery time increases in proportion to the transformation history length called lineage. This is because it recovers the last state data based on the cumulative lineage recorded during normal operation. Therefore, fault recovery time is not bounded within a limited time. In addition, it is impossible to achieve a second-scale fault recovery time because it costs tens of seconds to read initial state data from fault-tolerant storage. In this paper, we propose two techniques to solve the problems mentioned above. We apply the proposed techniques to Spark Streaming 1.6.2. Experimental results show that the fault recovery time is bounded and the average fault recovery time is reduced by up to 41.57%.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr