검색 : [ author: Young Ki Kim ] (1)

결정트리 기반의 기계학습을 이용한 동적 데이터에 대한 재익명화기법

김영기, 홍충선

http://doi.org/

사물인터넷, 클라우드 컴퓨팅, 빅데이터 등 새로운 기술의 도입으로 처리하는 데이터의 종류와 양이 증가하면서, 개인의 민감한 정보가 유출되는 것에 대한 보안이슈가 더욱 중요시되고 있다. 민감정보를 보호하기 위한 방법으로 데이터에 포함된 개인정보를 공개 또는 배포하기 전에 일부를 삭제하거나 알아볼 수 없는 형태로 변환하는 익명화기법을 사용한다. 그러나 준식별자의 일반화 수준을 계층화하여 익명화를 수행하는 기존의 방법은 데이터 테이블의 레코드가 추가 또는 삭제되어 k-익명성을 만족하지 못하는 경우에 더 높은 일반화 수준을 필요로 한다. 이와 같은 과정으로 인한 정보의 손실이 불가피하며 이는 데이터의 유용성을 저해하는 요소이다. 따라서 본 논문에서는 결정트리 기반의 기계학습을 적용하여 기존의 익명화방법의 정보손실을 최소화하여 데이터의 유용성을 향상시키는 익명화기법을 제안한다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr