디지털 라이브러리[ 검색결과 ]
스마트폰상의 지능형 개인화 서비스를 위한 강인한 파티클 필터 기반의 사용자 경로 예측
스마트폰내 GPS 및 다양한 센서 데이터를 이용하여 스마트폰 사용자의 이동 패턴을 학습하고, 이를 기반으로 사용자 목적지와 경로를 예측하여 사용자의 의도에 맞는 서비스를 제공하는 위치기반 지능형 개인화 서비스(Intelligent personal assistant) 연구가 활발히 진행 되고 있다. 위치기반 개인화 서비스의 지능성은 불완전한 센서 데이터로부터 사용자 이동 정보를 처리하여, 실시간으로 사용자의 경로를 예측하는 정확성과 효율성에 좌우된다. 본 논문은 불완전한 정보로부터 사용자의 경로와 목적지를 추론하는 동적 베이지안 네트워크 기반의 강인한 파티클 필터(Robust particle filter)를 제안한다. 제안한 강인한 파티클 필터 방법은 부정확하고, 불완전한 센서 정보를 보완할 수 있는 파티클 생성, 실시간에 계산 복잡도를 감소시키는 효율적인 스위칭 함수와 가중치 함수, 파티클의 정확도를 향상시키는 재표본화로 구성되며, 사용자의 목적지와 경로의 예측 정확성과 효율성의 성능을 향상시켰다.
Scalable RDFS Reasoning using Logic Programming Approach in a Single Machine
Batselem Jagvaral, Jemin Kim, Wan Gon Lee, Young Tack Park
시맨틱 웹상에서 RDFS로 표현된 데이터의 사용 증가로 인하여, 대용량 데이터의 추론에 대한 많은 요구가 생겨나고 있다. 많은 연구자들은 대용량 온톨로지 추론을 수행하기 위해서 하둡과 같은 고가의 분산 프레임워크를 활용한다. 그러나, 적절한 사이즈의 RDFS 트리플 추론을 위해서는 굳이 고가의 분산 환경 시스템을 사용하지 않고 단일 머신에서도 논리적 프로그래밍을 이용하면 분산 환경과 유사한 추론 성능을 얻을 수 있다. 본 논문에서는 단일 머신에 논리적 프로그래밍 방식을 적용한 대용량 RDFS 추론 기법을 제안하였고 다중 머신을 기반으로 한 분산 환경 시스템과 비교하여 2억개 정도의 트리플에 대한 RDFS 추론 시스템을 적용한 경우 분산환경과 비슷한 성능을 보이는 것을 실험적으로 증명하였다. 효율적인 추론을 위해 온톨로지 모델을 세부적으로 분리한 메타데이터 구조와 대용량 트리플의 색인 방안을 제안하고 이를 위해서 전체 트리플을 하나의 모델로 로딩하는 것이 아니라 각각 온톨로지 추론 규칙에 따라 적절한 트리플 집합을 선택하였다. 또한 논리 프로그래밍이 제공하는 Unification 알고리즘 기반의 트리플 매칭, 검색, Conjunctive 질의어 처리 기반을 활용하는 온톨로지 추론 방식을 제안한다. 제안된 기법이 적용된 추론 엔진을 LUBM1500(트리플 수 2억개) 에 대해서 실험한 결과 166K/sec의 추론 성능을 얻었는데 이는 8개의 노드(8 코아/노드)환경에서 맵 리듀스로 수행한 WebPIE의 185K/sec의 추론 속도와 유사함을 실험적으로 증명하였다. 따라서 단일 머신에서 수행되는 본 연구 결과는 트리플의 수가 2억개 정도까지는 분산환경시스템을 활용하지 않고도 분산환경 시스템과 비교해서 비슷한 성능을 보이는 것을 확인할 수 있었다.