Search : [ keyword: 매출 예측 ] (2)

A Study on Sales Prediction Model Based on BiLSTM-GAT Using Credit Card Transaction Data

Wonseok Jung, Dohyung Kim, Young Ik Eom

http://doi.org/10.5626/JOK.2024.51.9.807

Sales prediction using credit card transaction data is essential for understanding consumer buying patterns and market trends. However, traditional statistical and machine learning models have limitations when it comes to analyzing temporal features and the relationships between different variables, such as geographical data and sales information by service types, population, and transaction times. This paper proposes two models that can simultaneously analyze the relationships based on commercial district features and sales time-series features. To evaluate the performance of these models, we constructed graphs based on the distances and sales similarity of features between commercial districts. We then compared the performance of the proposed models with traditional time-series models, namely LSTM and BiLSTM. The results of the experiment showed that the GAT-BiLSTM model improved prediction accuracy by approximately 15% compared to the BiLSTM model, while the BiLSTM-GAT model improved it by about 29% over the BiLSTM model, as measured by RMSE.

T-Commerce Sale Prediction Using Deep Learning and Statistical Model

Injung Kim, Kihyun Na, Sohee Yang, Jaemin Jang, Yunjong Kim, Wonyoung Shin, Deokjung Kim

http://doi.org/10.5626/JOK.2017.44.8.803

T-commerce is technology-fusion service on which the user can purchase using data broadcasting technology based on bi-directional digital TVs. To achieve the best revenue under a limited environment in regard to the channel number and the variety of sales goods, organizing broadcast programs to maximize the expected sales considering the selling power of each product at each time slot. For this, this paper proposes a method to predict the sales of goods when it is assigned to each time slot. The proposed method predicts the sales of product at a time slot given the week-in-year and weather of the target day. Additionally, it combines a statistical predict model applying SVD (Singular Value Decomposition) to mitigate the sparsity problem caused by the bias in sales record. In experiments on the sales data of W-shopping, a T-commerce company, the proposed method showed NMAE (Normalized Mean Absolute Error) of 0.12 between the prediction and the actual sales, which confirms the effectiveness of the proposed method. The proposed method is practically applied to the T-commerce system of W-shopping and used for broadcasting organization.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr