검색 : [ keyword: 문맥 표현 ] (2)

개체명 사실 판별을 통한 기계 요약의 사실 불일치 해소

신정완, 노윤석, 송현제, 박세영

http://doi.org/10.5626/JOK.2022.49.3.231

기계 요약의 사실 불일치 문제란 요약 모델이 생성한 요약문이 원문과 사실이 일치하지 않는 문제다. 사실 불일치는 개체명에서 주로 발생하므로 기존 연구들은 요약문의 잘못된 개체명을 교정하여 사실적 불일치를 해결하였다. 하지만, 명시적인 개체명 사실 불일치 판별 없이 모든 개체명을 순차적으로 교정하거나 모두 마스킹하여 교정을 시도하였다. 모든 개체명을 교정하는 연구는 원문과 일치하는 개체명도 교정을 시도하는 문제점과 마스킹되어 사실 정보임에도 불구하고 정보를 손실시키는 문제가 발생한다. 본 논문에서는 기존 연구들의 단점을 해결하기 위해 개체명 사실 여부를 판별한 뒤 사실 불일치 개체명에 대해서만 교정을 하는 방법을 제안한다. 이를 통해 사실 불일치 개체명이 발생시키는 오류를 방지할 수 있으며, 반대로 사실 일치 개체명에 대한 정보를 최대한 활용할 수 있다. 실험을 통해 제안한 방법이 기존연구들보다 요약문의 사실 불일치를 잘 해소함을 보였다.

문맥 표현과 셀프 어텐션을 이용한 한국어 영화평 감성 분석

박천음, 이동헌, 김기훈, 이창기, 김현기

http://doi.org/10.5626/JOK.2019.46.9.901

감성 분석은 특정 대상에 대한 의견을 수집하고 분류하는 과정이다. 그러나 자연어에 포함된 사람의 주관을 파악하는 일은 어려운 일로써, 기존의 감성 단어 사전이나 확률 모델은 이러한 문제를 해결하기 어려웠으나 딥 러닝의 발전으로 문제 해결을 시도할 수 있게 됐다. 셀프 어텐션(self-attention)은 주어진 입력열 자신에 대하여 어텐션을 계산하고 가중치 합으로 문맥 벡터를 만들어 모델링하는 방법이며, 문맥상 비슷한 의미를 가진 단어들 간에 높은 가중치가 계산되는 효과가 있다. 본 논문에서는 사전 학습된 문맥 표현을 한국어 감성 분석에 활용하고, 셀프 어텐션으로 모델링하는 방법을 제안한다. 실험 결과, NSMC의 경우 정확도 89.82%, 다음카카오의 경우 92.25%의 성능을 보였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr