디지털 라이브러리[ 검색결과 ]
지식베이스로부터 자연어 문장 생성을 위한 노이즈 추가 기법
http://doi.org/10.5626/JOK.2020.47.10.965
지식베이스로부터 자연어 문장 생성이란 지식베이스 내 트리플을 입력하여 트리플이 내포하고 있는 정보, 즉 개체와 각 개체간의 관계를 포함하고 있는 자연어 문장을 생성하는 작업이다. 해당 작업을 심층신경망 방식으로 해결하기 위해서는 많은 트리플과 자연어 문장 쌍으로 구성된 학습데이터가 필요하다. 하지만 이와 같은 공개 된 한국어 학습데이터는 존재하지 않기 때문에 학습에 어려움을 겪고 있다. 본 논문에서는 이러한 학습 데이터 부족 문제를 해결하기 위하여 한국어 위키피디아 문장 데이터를 기반으로 핵심어를 추출한 뒤, 노이즈 추가 기법을 이용해 학습 데이터를 생성하는 비지도 학습 방법을 제안한다. 제안 모델을 평가하기 위하여 사람이 직접 제작한 트리플과 자연어 문장 쌍 정답 데이터를 이용하여 평가를 수행하였다. 자동 평가와 수동 평가 결과, 노이즈 추가 기법을 이용한 자연어 문장 생성 모델이 기존 비지도 학습 데이터를 이용한 모델보다 여러 측면에서 높은 성능을 보였다.
주의집중 메커니즘을 통한 인코더-디코더 기반의 지식 베이스 트리플 활용 문장 생성
http://doi.org/10.5626/JOK.2019.46.9.934
본 논문은 정형화된 구조를 지니는 지식 베이스 트리플(Knowledge Base Triples) 데이터를 활용하여 자연어 형태의 문장 생성 연구를 진행하였다. 트리플을 구체적으로 표현하는 문장 생성을 위해 LSTM(Long Short-term Memory Network) 인코더(Encoder)-디코더(Decoder) 구조를 활용, 주의집중 메커니즘(Attention Mechanism)을 적용하였다. 테스트 데이터에 대해 BLEU, ROUGE 스코어 각각 42.264 (BLEU-1), 32.441(BLEU-2), 26.820(BLEU-3), 24.446(BLEU-4), 47.341(ROUGE-L) 성능을 보였으며, 동일 데이터의 비교 모델에 대해 0.8%(BLEU-1) 상승된 성능을 보였다. 또한 상위 10개의 테스트 데이터 BLEU 스코어 평균 측정 결과 99.393(BLEU-1)로 높은 스코어를 기록하여, 이를 통해 문장 생성 결과가 유의미함을 확인하였다.
Application of Improved Variational Recurrent Auto-Encoder for Korean Sentence Generation
Sangchul Hahn, Seokjin Hong, Heeyoul Choi
http://doi.org/10.5626/JOK.2018.45.2.157
딥러닝의 급속한 발전은 패턴인식 분야의 성능을 혁신했으며 몇몇 문제에서는 인간 수준을 넘어서는 결과들을 보여주고 있다. 데이타를 분류하는 패턴인식과 달리 본 논문에서는 주어진 몇개의 한국어 문장으로부터 비슷한 문장들을 생성하는 문제를 다룬다. 이를위해 생성모델 중의 하나인 Variational Auto-Encoder 기반의 모델을 한국어 생성에 맞게 개선하고 적용하는 방법들을 논의한다. 첫째, 교착어인 한국어의 특성상 띄어쓰기를 기준으로 단어 생성시 단어의 개수가 너무 많아 이를 줄이기 위해 조사 및 어미들을 분리할 필요가 있다. 둘째, 한국어는 어순이 비교적 자유롭고 주어 목적어 등이 생략되는 경우가 많아 기존의 단방향 인코더를 양방향으로 확장한다. 마지막으로, 주어진 문장들을 기반으로 비슷하지만 새로운 문장들을 생성하기 위해 기존 문장들의 인코딩된 벡터표현들로부터 새로운 벡터를 찾아내고, 이 벡터를 디코딩하여 문장을 생성한다. 실험 결과를 통해 제안한 방법의 성능을 확인한다.
멀티모달 개념계층모델을 이용한 만화비디오 컨텐츠 학습을 통한 등장인물 기반 비디오 자막 생성
기존 멀티모달 학습 기법의 대부분은 데이터에 포함된 컨텐츠 모델링을 통한 지식획득보다는 이미지나 비디오 검색 및 태깅 등 구체적 문제 해결에 집중되어 있었다. 본 논문에서는 멀티모달 개념계층모델을 이용하여 만화 비디오로부터 컨텐츠를 학습하는 기법을 제안하고 학습된 모델로부터 등장인물의 특성을 고려한 자막을 생성하는 방법을 제시한다. 멀티모달 개념계층 모델은 개념변수층과 단어와 이미지 패치의 고차 패턴을 표현하는 멀티모달 하이퍼네트워크층으로 구성되며 이러한 모델구조를 통해 각각의 개념변수는 단어와 이미지패치 변수들의 확률분포로 표현된다. 제안하는 모델은 비디오의 자막과 화면 이미지로부터 등장 인물의 특성을 개념으로서 학습하며 이는 순차적 베이지안 학습으로 설명된다. 그리고 학습된 개념을 기반으로 텍스트 질의가 주어질 때 등장인물의 특성을 고려한 비디오 자막을 생성한다. 실험을 위해 총 268분 상영시간의 유아용 비디오 ‘뽀로로’로부터 등장인물들의 개념이 학습되고 학습된 모델로부터 각각의 등장인물의 특성을 고려한 자막 문장을 생성했으며 이를 기존의 멀티모달 학습모델과 비교했다. 실험결과는 멀티모달 개념계층모델은 다른 모델들에 비해 더 정확한 자막 문장이 생성됨을 보여준다. 또한 동일한 질의어에 대해서도 등장인물의 특성을 반영하는 다양한 문장이 생성됨을 확인하였다.