디지털 라이브러리[ 검색결과 ]
검색 : [ keyword: 문장 생성 모델 ] (1)
주의집중 메커니즘을 통한 인코더-디코더 기반의 지식 베이스 트리플 활용 문장 생성
http://doi.org/10.5626/JOK.2019.46.9.934
본 논문은 정형화된 구조를 지니는 지식 베이스 트리플(Knowledge Base Triples) 데이터를 활용하여 자연어 형태의 문장 생성 연구를 진행하였다. 트리플을 구체적으로 표현하는 문장 생성을 위해 LSTM(Long Short-term Memory Network) 인코더(Encoder)-디코더(Decoder) 구조를 활용, 주의집중 메커니즘(Attention Mechanism)을 적용하였다. 테스트 데이터에 대해 BLEU, ROUGE 스코어 각각 42.264 (BLEU-1), 32.441(BLEU-2), 26.820(BLEU-3), 24.446(BLEU-4), 47.341(ROUGE-L) 성능을 보였으며, 동일 데이터의 비교 모델에 대해 0.8%(BLEU-1) 상승된 성능을 보였다. 또한 상위 10개의 테스트 데이터 BLEU 스코어 평균 측정 결과 99.393(BLEU-1)로 높은 스코어를 기록하여, 이를 통해 문장 생성 결과가 유의미함을 확인하였다.