디지털 라이브러리[ 검색결과 ]
Dhash 기반 고속 악성코드 변종 탐지기법
http://doi.org/10.5626/JOK.2019.46.11.1207
악성코드 생성 도구와 난독화 기법의 대중화로 악성코드는 지능화되고 있지만 기존의 악성코드 탐지 기법은 악성코드에 대해 완벽하지 못한 탐지를 보여주고 있다. 이에 새롭게 등장하는 악성코드 중 다수가 기존에 발생했던 악성코드의 변종이라는 것과 변종 악성코드는 원본 악성코드와 비슷한 바이너리 데이터를 갖는 특징을 고려해 파일의 바이너리 데이터를 통해 이미지를 분류하는 Dhash 기반 악성코드 탐지 기법을 제시하며, Dhash 알고리즘의 전수비교로 인한 느린 분석 시간을 개선한 10-gram 알고리즘을 제시한다. 변종 악성코드 탐지에서 우수한 ssdeep 기법과의 비교를 통해 ssdeep이 탐지하지 못하는 영역에 대해 Dhash 알고리즘이 탐지했음을 보이며, 기존의 Dhash 알고리즘과 본 논문에서 제안하는 알고리즘의 탐지 속도 성능 비교 실험을 통해 제안하는 알고리즘의 우수성을 증명한다. 향후 다른 LSH기반 탐지 기법과 연계한 변종 악성코드 분석 기술 개발을 지속 진행할 예정이다.
다중 서열 정렬 기법을 이용한 악성코드 패밀리 추천
악성코드 개발자들은 악성코드 탐지를 회피하기 위하여 변종 악성코드를 유포한다. 정적 분석기반의 안티 바이러스로는 변종 악성코드를 탐지하기 어려우며, 따라서 API 호출 정보 기반의 동적 분석이 필요하다. 본 논문에서는 악성코드 분석가의 변종 악성코드 패밀리 분류에 도움을 줄 수 있는 악성코드 패밀리 추천 기법을 제안하였다. 악성코드 패밀리의 API 호출 정보를 동적 분석을 통하여 추출하였다. 추출한 API 호출 정보에 다중 서열 정렬 기법을 적용하였다. 정렬 결과로부터 각 악성코드 패밀리의 시그니쳐를 추출하였다. 시그니쳐와의 유사도를 기준으로, 제안하는 기법이 새로운 악성코드의 패밀리 후보를 3개까지 추천하도록 하였다. 실험을 통하여 제안한 악성코드 패밀리 추천 기법의 정확도를 측정하였다.