검색 : [ keyword: 분류분석 ] (2)

딥러닝을 이용한 화합물-단백질 상호작용 예측

서상민, 안재균

http://doi.org/10.5626/JOK.2019.46.10.1054

화합물과 단백질 간의 상호작용을 특성화하는 것은 약물 개발 및 탐색을 위해 중요한 과정이다. 상호작용을 파악하기 위해 단백질과 화합물의 구조 데이터를 이용하지만 그 구조가 알려져 있지 않은 경우도 많으며, 많은 계산 양으로 인해 예측의 속도와 정확도도 떨어질 수 있다는 한계가 있다. 본 논문에서는 기계번역에서 사용되는 sequence-to-sequence 알고리즘과 입력벡터를 효과적으로 축소시키기 위한 오토 인코더를 결합한 모델인 S2SAE (Sequence-To-Sequence Auto-Encoder)를 이용하여 화합물-단백질 상호작용을 예측하였다. 본 논문에서 제안한 방법은 기존의 복합체를 나타내는 표현들보다 적은 수의 특징들을 이용하여 상호작용을 예측할 수 있으며, 기존의 방법보다 높은 예측 정확도를 보여주었다.

페이지랭크를 이용한 암환자의 이질적인 예후 유전자 식별 및 예후 예측

최종환, 안재균

http://doi.org/10.5626/JOK.2018.45.1.61

암환자의 예후 예측에 기여하는 유전자를 찾는 것은 환자에게 보다 적합한 치료를 제공하기 위한 도전 과제 중 하나이다. 예후 유전자를 찾기 위해 유전자 발현 데이터를 이용한 분류 모델 개발 연구가 많이 이루어지고 있다. 하지만 암의 이질성으로 인해 예후 예측의 정확도 향상에 한계가 있다는 문제가 있다. 본 논문에서는 유방암을 비롯한 6개의 암에 대한 암환자의 마이크로어레이 데이터와 생물학적 네트워크 데이터를 이용하여 페이지랭크 알고리즘을 통해 예후 유전자들을 식별하고, K-Nearest Neighbor 알고리즘을 사용하여 암 환자의 예후를 예측하는 모델을 제안한다. 그리고 페이지랭크를 사용하기 전에 K-Means 클러스터링으로 유전자 발현 패턴이 비슷한 샘플들을 나누어 이질성을 극복하고자 한다. 본 논문에서 제안한 방법은 기존의 유전자 바이오마커를 찾는 알고리즘보다 높은 예측 정확도를 보여주었으며, GO 검증을 통해 클러스터에 특이적인 생물학적 기능을 확인하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr