Search : [ keyword: 불확실성 ] (2)

CNN-based Reduced Complexity Decision Confidence Estimation for Imbalanced Web Application Attack Detection

Seungyoung Park, Hansung Kim, Taejoon Jung

http://doi.org/10.5626/JOK.2020.47.9.842

As web application attacks have been rapidly increasing and their types have been diversified, there are limitations on detecting them with the existing schemes. To resolve this problem, the detection techniques using machine learning such as the convolutional neural network (CNN) have been proposed. However, the confidence on the decision error sample in these techniques has been unreliable. To estimate more reliable decision confidence, the Monte-Carlo batch normalization (MCBN) technique combined with the CNN has been proposed. In particular, the CNN performs multiple decisions on a given evaluation sample using multiple mini-batches containing it. Then, its decision confidence estimate is obtained by averaging the multiple decision results. However, it requires too large of a computational load. The reason is that each mini-batch comprises randomly selected (M-1) training samples and only one evaluation sample, when the mini-batch size is M. In this paper, we propose a reduced complexity decision confidence estimation scheme for imbalanced web application attack detection. Specifically, the proposed scheme reduces the computational load by up to M times compared to the MCBN scheme. Also, at the estimation process, the ratio of normal and attack samples in the mini-batch should be maintained the same as that of the training process. To achieve this, we found which class size was small by performing a temporal decision on the evaluation samples. Then, the small class was over-sampled using the training samples to maintain the ratio. Our experimental results showed that the performance improved, and the reliability estimation performance was not significantly degraded compared to the MCBN scheme.

ChannelAug: A New Approach to Data Augmentation for Improving Image Classification Performance in Uncertain Environments

Hyeok Yoon, Soohan Kang, Ji-Hyeong Han

http://doi.org/10.5626/JOK.2020.47.6.568

We propose a new data augmentation method that works by separating the RGB channels of an image to improve image classification ability in uncertain environments. Many data augmentation methods, using technique such as flipping and cropping, have been used to improve the image classification ability of models. while these data augmentation methods have been effective in improving image classification, they have unperformed in uncertain conditions. To solve this problem, we propose the ChannelSplit that separates and reassembles the RGB channels of an image, along with the Mix ChannelSplit, that adopts the concept of MixUp[1,2] to express more diversity. In this paper, the proposed ChannelSplit and Mix ChannelSplit are called ChannelAug because they only utilize channels and do not perform any other image operations. Also, we compare ChannelAug to other image augmentation methods to prove it enhances robustness and uncertainty measures on image classification.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr