디지털 라이브러리[ 검색결과 ]
에너지 데이터의 순위상관계수 기반 건물 내 오작동 기기 탐지
비정상행위 탐지는 데이터로부터 특징을 추출하여 정상 행위 모델을 만들어, 이 정상 모델로부터 얼마나 벗어나 있는 가를 찾아내어 탐지하는 기법이다. 즉, 특정 기기가 생성하는 데이터를 기반으로 기기의 오류를 탐지하거나 사회망 데이터에서의 사용자 행위 변화를 찾아내어 비정상행위를 탐지하는 데 활용할 수 있다. 본 논문에서는 순위 상관 계수를 이용하여 건물 내의 기기의 비정상적인 데이터를 탐지하고자 한다. 에너지 절약 문제에 대한 관심이 높아짐에 따라 에너지를 효율적으로 사용하기 위해 여러 방법들이 제안되었다. IT 기술의 발달과 더불어 공조 시스템(HVAC)이 건물에 도입되어 활용되고 있으며, 이 시스템을 통하여 에너지 소비의 문제점을 찾고 에너지를 효율적으로 관리할 수 있다. 따라서 본 논문은 공조 시스템에 속한 각 기기간의 순위 관계 변화를 관찰함으로써 이상 현상 탐지의 효율성을 높이는 방법을 제안하며, 사회망 데이터 내에서의 비정상행위 탐지 가능성도 함께 제안한다.
상관계수의 안전한 다자간 계산
본 논문에서는 분산 컴퓨팅 환경에서 데이터 제공자들이 각자 소유한 데이터의 프라이버시는 보호하면서도 피어슨(Pearson) 상관계수와 스피어만(Spearman)의 순위상관계수를 안전하게 계산하는 해결책을 각각 제안한다. 분산 컴퓨팅 환경에서 마이닝(또는 데이터 분석)을 수행하기 위해서는 원본 데이터를 상대방에게 제공해야 한다. 그러나, 원본 데이터는 민감한 정보를 포함하는 경우가 많고, 이때 데이터 제공자(소유자)는 프라이버시 보호를 이유로 정확한 값을 직접 노출하기를 원하지 않는다. 본 논문에서는 분산 컴퓨팅 환경의 데이터 제공자들이 각자 소유한 데이터는 상대방에게 공개하지 않으면서 상관관계를 계산하는 문제, 즉 안전한 상관관계 계산(SCC: Secure Correlation Computation) 문제를 정형적으로 정의한다. 그리고, 임의 행렬 기반 안전한 스칼라 곱을 사용하여 피어슨 상관계수와 순위상관계수에 대한 SCC 문제를 해결하는 방법을 각각 제안한다. 제안한 해결책이 바르게 수행함을 보이기 위해, 정확성과 안전성을 정리로 제시하고 증명한다. 또한, 실험을 통해 제안한 기법이 수행 시간 측면에서도 실용적인 방법임을 보인다.