Digital Library[ Search Result ]
A Hybrid Deep Learning Model for Generating Time-series Fire Data in Underground Utility Tunnel based on Convolutional Attention TimeGAN
http://doi.org/10.5626/JOK.2024.51.6.490
Underground utility tunnels (UUTs) play a crucial role in urban operation and management. Fires are the most common disasters in the facilities, and there is a growing demand for fire management systems using artificial intelligence (AI). However, due to the difficulty of collecting fire data for AI training, utilizing data generation models reflecting the key characteristics of real fires can be an alternative. In this paper, we propose an approach for generating AI training data based on the fire data generation model CA-TimeGAN. To collect fire simulation data for training the proposed model, we constructed a UUT in Chungbuk Ochang within the fire dynamic simulator (FDS) virtual environment. In the experiments, we compared data generated by TimeGAN and CA-TimeGAN, verifying the data quality and effectiveness. Discriminative score converged to 0.5 for both CA-TimeGAN and TimeGAN. Predictive scores improved by 66.1% compared to models trained only on simulated data and by 22.9% compared to models incorporating TimeGAN-generated data. PCA and t-SNE analyses showed that the distribution of generated data was similar to that of simulated data.
Image Caption Generation using Object Attention Mechanism
http://doi.org/10.5626/JOK.2019.46.4.369
Explosive increases in image data have led studies investigating the role of image caption generation in image expression of natural language. The current technologies for generating Korean image captions contain errors associated with object concurrence attributed to dataset translation from English datasets. In this paper, we propose a model of image caption generation employing attention as a new loss function using the extracted nouns of image references. The proposed method displayed BLEU1 0.686, BLEU2 0.557, BLEU3 0.456, BLEU4 0.372, which proves that the proposed model facilitates the resolution of high-frequency word-pair errors. We also showed that it enhances the performance compared with previous studies and reduces redundancies in the sentences. As a result, the proposed method can be used to generate a caption corpus effectively.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr