디지털 라이브러리[ 검색결과 ]
신경망 및 비신경망 오토인코더 기반 추천 모델의 성능 비교 및 분석
http://doi.org/10.5626/JOK.2020.47.11.1078
다양한 분야에 심층 신경망이 도입되어 획기적인 성능 개선을 보이고 있으나, 최근 심층 신경 망 기반 추천 모델의 성능 개선이 크게 보이지 않는다는 주장이 나오고 있다. 이와 같은 문제는 추천 연구에 통용되는 실험 환경의 부재와 제안 모델 성능에 대한 엄밀한 분석 부재에 기인한다. 본 논문에서는 1) 추천 모델의 공정한 비교를 위한 실험 프로토콜을 구성하고, 2) 추천 모델의 한 축인 오토인코더 기반추천 모델에 대해서 실험적 검증을 수행하며, 3) 사용자와 항목 인기도를 기준으로 여러 개의 세부 그룹으로 나누어 실험 결과를 분석한다. 실험 결과, 모든 데이터셋에서 신경망 기반 모델의 추천 성능이 비신경망 대비 일관적인 성능 개선을 보이지 않았으며, 신경망 모델 내에서도 주된 정확도 개선을 확인할 수 없었다. 한편, 세부 그룹별 성능 평가 결과에서는 인기 항목에선 비신경망 모델의, 비인기 항목에선 신경망 모델의 정확도가 높음이 확인하였고, 이를 통해 신경망 모델의 복잡성이 비인기 항목에 대한 추천에 도움이 될 수 있다고 판단된다.
성별의 알고리즘 편향성 감소를 위한 오토인코더 기반 딥러닝 모델
http://doi.org/10.5626/JOK.2019.46.8.721
알고리즘 편향성은 알고리즘 설계과정에서 트레이닝 데이터에서의 편견이나 모델과 데이터의 특성 사이의 조합에 의해 모델에 반영되는 편향을 의미한다. 최근에는 이러한 편향성이 딥러닝 모델에서 나타날 뿐만 아니라 증폭된다는 연구가 진행되면서 편향성 제거에 관한 문제가 제기되고 있다. 본 논문에서는 성별에 의한 알고리즘 편향성을 편향-분산 딜레마의 관점에서 분석하며 편향성의 원인을 규명하였고 이를 해결하기 위해 심층 오토인코더 기반 잠재공간 일치모델을 제안한다. 우리는 딥러닝에서의 알고리즘 편향성은 모델 내부의 특징 추출부분에서 보호특징별 잠재 공간이 다르다는 것을 실험으로 보여주었다. 본 논문에서 제안하는 모델은 성별특징이 다른 데이터를 동일한 잠재공간으로 전사시킴으로써 추출된 특징의 차이를 줄여 저편향성을 달성하였다. 우리는 정량적 평가지표로 Equality of Odds와 Equality of Opportunity를 사용하여 기존모델에 비해 편향성이 낮음을 입증하고 ROC 곡선으로 통해 성별사이의 예측결과의 편차가 줄어들었음을 확인하였다.
고해상도 지도 생성을 위해서 ERF를 고려한 GAN
http://doi.org/10.5626/JOK.2019.46.2.122
본 논문은 고해상도 이미지 변환에 적합한 GAN(Generative Adversarial Network)의 네트워크 구조를 제안한다. 고해상도 이미지 변환에 필수적인 해상도와 분류 관계를 분석하기 위해 각 인코더들의 effective receptive fields의 크기를 계산하고, 새롭게 connection imbalance fields를 정의한다. 인코더와 디코더 간을 patch 단위로 연결하여 전체 층 수를 줄임으로써 적절한 effective receptive fields와 매개변수 사용 가능성을 실험을 통해 확인한다. 고해상도 이미지 변환 시에 해상도와 분류를 동시에 제공하기 어려운 문제를 개선하기 위해 고해상도 위성 사진을 변환할 수 있는 네트워크 구조를 실험적으로 제시한다. 또한 제시된 네트워크와 기존 네트워크의 receptive fields 크기를 비교 분석하여, 해상도와 분류를 동시에 향상시키는 네트워크 구조에 대한 타당성을 확인한다. 그리고, 제시된 네트워크와 기존의 네트워크를 이미지 유사도 분석 방법인 SSIM을 통해서 객관적 수치를 통해 비교함으로써 제안된 구조의 적합성을 정량적으로 검증한다.
Application of Improved Variational Recurrent Auto-Encoder for Korean Sentence Generation
Sangchul Hahn, Seokjin Hong, Heeyoul Choi
http://doi.org/10.5626/JOK.2018.45.2.157
딥러닝의 급속한 발전은 패턴인식 분야의 성능을 혁신했으며 몇몇 문제에서는 인간 수준을 넘어서는 결과들을 보여주고 있다. 데이타를 분류하는 패턴인식과 달리 본 논문에서는 주어진 몇개의 한국어 문장으로부터 비슷한 문장들을 생성하는 문제를 다룬다. 이를위해 생성모델 중의 하나인 Variational Auto-Encoder 기반의 모델을 한국어 생성에 맞게 개선하고 적용하는 방법들을 논의한다. 첫째, 교착어인 한국어의 특성상 띄어쓰기를 기준으로 단어 생성시 단어의 개수가 너무 많아 이를 줄이기 위해 조사 및 어미들을 분리할 필요가 있다. 둘째, 한국어는 어순이 비교적 자유롭고 주어 목적어 등이 생략되는 경우가 많아 기존의 단방향 인코더를 양방향으로 확장한다. 마지막으로, 주어진 문장들을 기반으로 비슷하지만 새로운 문장들을 생성하기 위해 기존 문장들의 인코딩된 벡터표현들로부터 새로운 벡터를 찾아내고, 이 벡터를 디코딩하여 문장을 생성한다. 실험 결과를 통해 제안한 방법의 성능을 확인한다.