Search : [ keyword: 주의집중 메커니즘 ] (2)

AttDRP: Attention Mechanism-based Model for Anti-Cancer Drug Response Prediction

Jonghwan Choi, Sangmin Seo, Sanghyun Park

http://doi.org/10.5626/JOK.2021.48.6.713

Resistance to anti-cancer drugs makes chemotherapy ineffective for cancer patients. Drug resistance is caused by genetic alterations in cancer cells. Many studies have investigated drug responses of diverse cancer cell lines to various anti-cancer drugs to understand drug response mechanisms. Existing studies have proposed machine learning models for drug response prediction to find effective anti-cancer drugs. However, currently there are no models to learn the relationship between anticancer drugs and genes to improve the prediction accuracy. In this paper, we proposed a predictive model AttDRP that could identify important genes associated with anti-cancer drugs and predict drug responses based on identified genes. AttDRP exhibited better predictive accuracy than existing models and we found that the attention scores of AttDRP could be effective tools to analyze molecular structures of anticancer drugs. We hope that our proposed method would contribute to the development of precision medicine for effective chemotherapy. Resistance to anti-cancer drugs makes chemotherapy ineffective for cancer patients. Drug resistance is caused by genetic alterations in cancer cells. Many studies have investigated drug responses of diverse cancer cell lines to various anti-cancer drugs to understand drug response mechanisms. Existing studies have proposed machine learning models for drug response prediction to find effective anti-cancer drugs. However, currently there are no models to learn the relationship between anticancer drugs and genes to improve the prediction accuracy. In this paper, we proposed a predictive model AttDRP that could identify important genes associated with anti-cancer drugs and predict drug responses based on identified genes. AttDRP exhibited better predictive accuracy than existing models and we found that the attention scores of AttDRP could be effective tools to analyze molecular structures of anticancer drugs.

Single Sentence Summarization with an Event Word Attention Mechanism

Ian Jung, Su Jeong Choi, Seyoung Park

http://doi.org/10.5626/JOK.2020.47.2.155

The purpose of summarization is to generate short text that preserves important information in the source sentences. There are two approaches for the summarization task. One is an extractive approach and other is an abstractive approach. The extractive approach is to determine if words in a source sentence are retained or not. The abstractive approach generates the summary of a given source sentence using the neural network such as the sequence-to-sequence model and the pointer-generator. However, these approaches present a problem because such approaches omit important information such as event words. This paper proposes an event word attention mechanism for sentence summarization. Event words serve as the key meaning of a given source sentence, since they express what occurs in the source sentence. The event word attention weights are calculated by event information of each words in the source sentence and then it combines global attention mechanism. For evaluation, we used the English and Korean dataset. Experimental results show that, the model of adopting event attention outperforms the existing models.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

Editorial Office

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr