검색 : [ keyword: 지식 그래프 ] (14)

지식 그래프의 링크 예측을 위한 거대 언어 모델 기반 관계 설명문 생성 방법

차현묵, 고영중

http://doi.org/10.5626/JOK.2024.51.10.908

지식 그래프는 개체들과 개체 사이의 관계들로 이루어진 네트워크로 수많은 자연어처리 문제 해결에 활용되고 있다. 불완전한 지식 그래프를 완성하기 위해 링크 예측과 관계 예측을 통한 그래프 완성 연구가 이루어지고 있다. 최근에는 개체와 관계에 대한 자연어 정보를 바탕으로 듀얼 인코더 구조를 활용 하는 모델이 등장하여 많은 관심을 받았다. 하지만, 링크 예측 데이터셋에는 관계에 대한 자연어 설명문은 존재하지 않기 때문에 개체에 대한 자연어 설명문에 지나치게 의존적이라는 문제점이 존재한다. 본 논문에 서는 이러한 문제 상황을 해결하기 위해서 거대 언어 모델인 GPT-3.5-turbo를 활용하여 관계에 대한 자 연어 설명문을 생성하여 기존의 모델이 관계에 대한 정보를 풍부하게 학습할 수 있도록 하였다. 또한 제안 방법을 통해 생성한 관계 설명문을 다른 언어 모델 기반 링크 예측 모델에 적용했을 때 성능 향상이 기대 된다. 링크 예측을 통한 성능 평가 결과, 제안 방법은 베이스라인 모델과 비교했을 때 한국어 ConceptNet, WN18RR, FB15k-237, YAGO3-10 데이터셋에 대해 MRR에서 각각 0.34%p, 0.11%p, 0.12%p, 0.41%p의 성능향상을 보였다.

개체 유형 정보를 활용한 지식 그래프 임베딩

공승환, 정찬영, 주수헌, 황지영

http://doi.org/10.5626/JOK.2022.49.9.773

지식 그래프 임베딩은 그래프의 구조적 특성을 반영하여 개체와 관계를 특성 공간에 나타내는 기술이다. 대부분의 지식 그래프 임베딩 모델은 그래프 구조 이외의 정보를 가정하지 않고 특징 벡터를 생성한다. 하지만 실생활과 밀접한 지식 그래프는 개체의 유형 정보 등 추가적인 정보를 얻을 수 있다. 본 논문에서는 개체의 유형이 클러스터의 역할을 수행할 수 있다는 점에 착안하여, 유형 정보를 반영할 수 있는 손실 함수를 통한 지식 그래프 임베딩 모델을 제시한다. 또한, 지식 그래프 내 관계의 주어/술어에 해당하는 유형이 제한적이라는 관찰을 토대로 개체 유형 제한에 특화된 네거티브 샘플링 기법을 제시한다. 본 논문에서 제시한 모델에 대한 링크 예측을 평가하기 위해 개체 유형 제한을 가진 지식 그래프인 SMC 데이터 셋을 생성하여 실험을 진행하였다. 링크 예측 결과는 본 모델이 네 개의 베이스라인 모델과 비교해서 뛰어난 성능을 보이는 것을 확인하였다.

노드와 링크간의 상호작용을 동시에 반영한 그래프 어텐션 네트워크 기반 지식 그래프 임베딩

김준선, 김명호

http://doi.org/10.5626/JOK.2022.49.7.555

지식 그래프는 실제 세계의 다양한 지식들을 노드와 링크 기반의 트리플 형태로 표현하는 지식구조로서 검색, 질의 응답 등의 여러 분야에서 유용하게 활용된다. 이런 지식 그래프는 불완전하며, 누락된 다른 관계들을 찾기 위해 노드와 링크를 저차원 벡터공간에 효과적으로 표현하는 임베딩 기법들이 많이 연구되었다. 최근 뉴럴 네트워크 기반의 지식 그래프 링크 예측 방법이 많이 연구되었지만, 기존 모델들은 노드에 대한 트리플의 중요도를 구할 때 노드와 링크를 독립적으로 고려하므로 트리플 내의 노드와 링크의 상호작용이 잘 반영하기 어렵다. 본 논문에서는 합성연산자를 이용하여 노드와 링크를 동시에 고려하여 트리플 단위의 중요도를 구하는 임베딩 방법을 제안하며 해당 모델이 지식 그래프 링크 예측에 우수한 성능을 보임을 증명한다.

GPT-2를 이용한 지식 그래프 완성

김상운, 신원철

http://doi.org/10.5626/JOK.2021.48.12.1281

지식 그래프는 많은 인공지능 작업에서 중요한 자원이 된다. 불완전한 지식 그래프를 지식 완성을 하는 많은 연구들이 진행되고 있으며, 그 중에서도 링크 예측, 관계 예측 등을 하여 지식 완성을 하는 연구에 대한 관심이 높아지고 있다. 인공지능의 자연어 처리에서 가장 화제가 되는 언어 모델에는 BERT, GPT-2가 있으며 그 중 BERT로 지식 완성 문제를 해결하고자 하는 KG-BERT가 있다. 본 논문에서는 최근 인공지능의 언어 모델에서 가장 큰 화제인 GPT-2를 활용하여 지식 완성 문제를 해결해 보고자 한다. 언어 모델인 GPT-2를 활용하여 지식 완성 문제를 해결하기 위한 방법으로 트리플 정보 기반지식 완성, 경로 및 트리플 기반 지식 완성을 제안하고 설명하였다. 이 본 논문에서 제안하는 모델은 KG-GPT2로 정의하였으며, 지식 완성 성능을 평가하기 위하여 TransE, TransR, KG-BERT, KG-GPT2의 링크 예측, 관계 예측 결과를 비교하는 방식으로 실험을 진행하였다. 링크 예측의 경우 WN18RR, FB15k-237, UMLS 데이터셋을 사용하였고, 관계 예측의 경우 FB15K를 사용하였다. 실험 결과로, KG-GPT2의 경로 및 트리플 기반 지식 완성에서 링크 예측의 경우 UMLS를 제외한 모든 실험 데이터셋에 대하여 가장 우수한 성능을 기록하였다. KG-GPT2의 경로 및 트리플 기반 지식 완성에서 모델의 관계 예측 작업 또한 FB15K 데이터셋에 대하여 가장 우수한 성능을 기록하였다.

상위 클래스 정보와 사전 학습된 언어 모델을 이용한 지식 그래프 완성 모델

장대식, 고영중

http://doi.org/10.5626/JOK.2021.48.11.1228

링크 예측은 지식 그래프에서 누락된 링크를 추론하는 것을 목표로 한다. 최근 지식 그래프를 완성하기 위해 다양한 링크 예측 모델이 연구되었고 의미 있는 결과를 얻었다. 그러나 기존 모델은 학습 트리플의 내재적 정보만 사용하여 학습하기 때문에 과적합 되는 문제가 있다. 이러한 문제를 해결하기 위해, 우리는 개체의 추상적 정보를 학습할 수 있는 상위 클래스 예측과 링크 예측을 multi-task learning 방법으로 수행하는 "상위 클래스 정보와 사전 학습된 언어 모델을 이용한 지식 그래프 완성 모델(HIP)"을 제안한다. HIP의 상위 클래스 예측 작업은 트리플의 문맥적 정보뿐만 아니라 개체의 추상적 정보 학습을 통해 같은 상위 클래스 정보를 갖는 개체들이 비슷한 임베딩을 가지며 개체의 일반적인 정보를 학습한다. 실험 결과 KG-BERT 및 MTL-KGC 모델에 비해 Hits@10과 Mean Rank (MR)에서 의미 있는 성능 향상을 보였다.

뉴로 심볼릭 기반 규칙 유도 및 추론 엔진을 활용한 지식 완성 시스템

신원철, 박현규, 박영택

http://doi.org/10.5626/JOK.2021.48.11.1202

최근 지식 그래프의 불완전성 문제를 해결하기 위한 다양한 지식 완성 연구중 딥러닝 학습 방법과 로직 시스템의 장점을 결합한 NTP(Neural Theorem Prover)와 같은 연구가 기존 연구들에 비해 좋은 성능을 내고 있다. 하지만 NTP는 하나의 입력에 대한 예측 결과를 얻기 위해 지식 그래프의 모든 트리플이 연산에 관여하게 되므로 대용량 지식 그래프 처리에 한계가 있다. 본 논문에서는 NTP의 계산 복잡도 문제를 개선한 모델로부터 심볼의 벡터 표현을 학습하여 규칙을 유도하고, 추론 엔진을 사용하여 유도된 규칙으로부터 지식 추론을 수행할 수 있는 딥러닝 학습 방식과 로직 추론 방식의 통합시스템을 제안한다. 본 논문에서 사용한 규칙 생성모델의 규칙유도 성능 검증을 위해 NTP와 Nations, Kinship, UMLS 데이터 셋을 대상으로 유도된 규칙을 활용한 테스트 데이터 추론가능 여부를 비교하였으며, 대규모 지식그래프인 Kdata와 WiseKB를 사용한 실험에서는 추론 엔진을 통한 지식 추론 결과 실험에 사용된 지식 그래프에 비해 각각 Kdata는 30%, WiseKB는 95%증가된 지식 그래프를 얻을 수 있었다.

Explanation segments 기반 설명 가능한 지식 완성 모델

이민호, 이완곤, 바트셀렘, 박영택

http://doi.org/10.5626/JOK.2021.48.6.680

최근 딥러닝을 활용하여 불완전한 지식 그래프를 대상으로 새로운 링크를 예측하는 연구가 많이 진행되고 있지만, 딥러닝을 활용한 링크 예측은 추론 결과에 대한 설명이 불가능하다는 한계점이 있다. 따라서 본 논문에서는 링크 예측 후, 추론 결과를 뒷받침하는 증거로서 설명 가능한 추론 경로를 제공하여 지식 완성의 효용성이 높은 모델을 제안한다. 이를 위해 우선 지식 그래프의 주어를 시작으로 목적어로 도달하는 또 다른 경로를 Path Ranking Algorithm 활용하여 생성하며, 이를 explanation segment라 정의하였다. 이 후 생성된 explanation segment를 CNN과 양방향 LSTM을 결합한 방식을 적용하여 임베딩 한다. 마지막으로 임베딩 된 explanation segment들과 추론할 후보 술어와의 의미적 유사성 계산을 기반으로 한 어텐션 메커니즘을 적용하여, 링크 예측 모델을 학습하였다. 모델 학습 후 링크 예측 설명에 적합한 explanation segment를 어텐션 점수에 기반으로 선정하여 제공한다. 제안하는 방법의 성능을 측정하기 위해 링크 예측 비교 실험 및 링크 예측 결과에 대한 설명으로 적합한 explanation segment의 비율을 측정하는 정확성 검증 실험을 진행하였다. 실험 데이터는 벤치마크 데이터인 NELL-995, FB15K-237, Countries를 대상으로 진행하였으며, 정확성 검증 실험에서 평균 89%. 44%, 97% 정확성을 보였고, 기존 연구와 비교했을 때, NELL-995는 평균 35%p, FB15K-237은 평균 21%p 높은 성능을 보였다.

질의문과 지식 그래프 관계 학습을 통한 지식 완성 시스템

김민성, 이민호, 이완곤, 박영택

http://doi.org/10.5626/JOK.2021.48.6.649

지식 그래프는 개체들 사이의 관계로 구성된 네트워크를 뜻한다. 이러한 지식 그래프에서 특정 개체들에 대한 관계가 누락되거나 잘못된 관계 연결과 같은 문제로 불완전한 지식 그래프의 문제점이 존재한다. 불완전한 지식 그래프의 문제를 해결하기 위한 많은 연구는 자연어 임베딩 기반으로 인공 신경망을 이용한 학습 방법들을 제안했다. 이러한 방법들로 다양한 지식 그래프 완성 시스템들이 연구되고 있는데 본 논문에서는 특정 질의와 지식 그래프를 활용해 누락된 지식을 추론하는 시스템을 제안하였다. 먼저 의문형의 Query로부터 topic을 자동으로 추출하여 해당 topic 임베딩을 지식 그래프 임베딩 모듈로부터 얻는다. 그 다음 Query 임베딩과 지식 그래프 임베딩을 활용하여 지식 그래프로부터의 topic과 질의문 사이의 관계를 학습하여 새로운 트리플을 추론한다. 이와 같은 방식을 통해 누락된 지식들을 추론하고 좋은 성능을 위해 특정 질의와 관련된 지식 그래프의 술어부 임베딩을 같이 활용하였고 기존 방법보다 더 좋은 성능을 보임을 증명하기 위해 MetaQA 데이터셋을 사용하여 실험을 진행하였다. 지식 그래프는 영화를 도메인으로 갖는 지식 그래프를 사용하였다. 실험 결과로 지식 그래프 전체와 누락된 지식 그래프를 가정하여 트리플들을 임의로 50% 누락시킨 지식 그래프에서 실험하여 기존 방법보다 더 좋은 성능을 얻었다.

뉴로 심볼릭 기반 규칙 생성을 통한 지식 완성 기법

노재승, 신원철, 박현규, 박영택

http://doi.org/10.5626/JOK.2021.48.4.425

지식 그래프는 실세계의 지식을 다양한 소스로부터 수집하여 구조화된 방식으로 표현한 것이다. 지식 그래프는 데이터들 간의 관계를 표현한 네트워크로서 인공지능 기술에 접목되어 다양하게 활용되고 있지만, 엔티티 또는 엔티티 사이의 링크가 누락되어 지식의 불완전성에 대한 문제가 존재한다. 이러한 문제 해결을 위해 자동 지식 완성 기법 연구가 중요하게 요구되며, 임베딩 기법을 사용하거나 딥러닝을 활용한 연구와 온톨로지를 이용한 심볼릭 규칙 추론을 통한 지식 완성 수행과 같은 다양한 연구들이 진행되었다. 이러한 방식을 통해 효율적으로 자동 지식 완성을 수행하지만 딥러닝 방식은 데이터 기반의 처리방식으로 인해 대량의 학습 데이터가 요구되며, 결과에 대한 설명이 불가능한 문제점이 있다. 그리고 온톨로지 기반의 방식은 전문가에 의해 정의된 온톨로지 및 규칙이 필요하다는 문제가 존재한다. 따라서 본 논문에서는 뉴로 심볼릭 방식을 이용하여 데이터에 내포된 규칙을 명시적으로 추출하여 자동 지식 완성방법을 제안한다. 규칙 추출을 위해 심볼릭 방식의 단일화(unification) 기반의 릴레이션 임베딩 경로를 구현하고, 이에 대한 손실 함수를 정의하여 자동으로 규칙을 생성한다. 기존의 임베딩 기법에 비하여 뉴로 심볼릭 방식은 속도와 성능이 더 우월함을 보여준다. 제안하는 방법의 성능을 측정하기 위해 Nations, UMLS, Kinship 데이터 셋을 대상으로 최신 지식 완성 연구와 비교 실험을 진행하였으며, 학습 시간이 크게 감소했고, 평균적으로 성능이 37.5%p 증가한 것을 확인하였다.

지식 그래프 임베딩 및 적응형 클러스터링을 활용한 오류 트리플 검출

신원철, 노재승, 박영택

http://doi.org/10.5626/JOK.2020.47.10.958

최근 인터넷의 발전으로 정보의 양이 늘어나면서 대용량 지식 그래프를 이용한 연구가 활발히 이루어지고 있다. 또한 지식 그래프가 다양한 연구와 서비스에 활용됨에 따라 양질의 지식 그래프를 확보해야 하는 필요성이 대두되고 있다. 하지만 양질의 지식 그래프를 얻기 위해 지식 그래프 내 오류를 검출하는 연구가 부족하다. 오류 트리플 검출을 위해 임베딩과 클러스터링을 사용한 이전 연구가 좋은 성능을 나타냈다. 하지만 클러스터 최적화 과정에서 일괄적으로 동일한 임계값을 사용하여 각 클러스터의 특성을 고려하지 못하는 문제가 존재하였다. 본 논문에서는 이러한 문제를 해결하고자 지식 그래프 내 오류 트리플 검출을 위해 지식 그래프에 대한 임베딩과 함께 각 클러스터에 대한 최적의 Threshold를 찾아 적용함으로써 클러스터링을 진행하는 적응형 클러스터링 모델을 제안한다. 본 논문에서 제안하는 방법의 성능을 평가하기 위해 DBpeida, Freebase와 WiseKB 세 가지 데이터셋을 대상으로 기존 오류 트리플 검출 연구와 비교 실험을 진행하였으며 F1-Score를 기준으로 평균 5.3% 높은 성능을 확인하였다.


Search




Journal of KIISE

  • ISSN : 2383-630X(Print)
  • ISSN : 2383-6296(Electronic)
  • KCI Accredited Journal

사무국

  • Tel. +82-2-588-9240
  • Fax. +82-2-521-1352
  • E-mail. chwoo@kiise.or.kr