Digital Library[ Search Result ]
Knowledge Completion System using Neuro-Symbolic-based Rule Induction and Inference Engine
Won-Chul Shin, Hyun-Kyu Park, Young-Tack Park
http://doi.org/10.5626/JOK.2021.48.11.1202
Recently, there have been several studies on knowledge completion methods aimed to solve the incomplete knowledge graphs problem. Methods such as Neural Theorem Prover (NTP), which combines the advantages of deep learning methods and logic systems, have performed well over existing methods. However, NTP faces challenges in processing large-scale knowledge graphs because all the triples of the knowledge graph are involved in the computation to obtain prediction results for one input. In this paper, we propose an integrated system of deep learning and logic inference methods that can learn vector representations of symbols from improved models of computational complexity of NTP to rule induction, and perform knowledge inference from induced rules using inference engines. In this paper, for rule-induction performance verification of the rule generation model, we compared test data inference ability with NTP using induced rules on Nations, Kinship, and UMLS data set. Experiments with Kdata and WiseKB knowledge inference through inference engines resulted in a 30% increase in Kdata and a 95% increase in WiseKB compared to the knowledge graphs used in experiments.
An Approach of Scalable SHIF Ontology Reasoning using Spark Framework
For the management of a knowledge system, systems that automatically infer and manage scalable knowledge are required. Most of these systems use ontologies in order to exchange knowledge between machines and infer new knowledge. Therefore, approaches are needed that infer new knowledge for scalable ontology. In this paper, we propose an approach to perform rule based reasoning for scalable SHIF ontologies in a spark framework which works similarly to MapReduce in distributed memories on a cluster. For performing efficient reasoning in distributed memories, we focus on three areas. First, we define a data structure for splitting scalable ontology triples into small sets according to each reasoning rule and loading these triple sets in distributed memories. Second, a rule execution order and iteration conditions based on dependencies and correlations among the SHIF rules are defined. Finally, we explain the operations that are adapted to execute the rules, and these operations are based on reasoning algorithms. In order to evaluate the suggested methods in this paper, we perform an experiment with WebPie, which is a representative ontology reasoner based on a cluster using the LUBM set, which is formal data used to evaluate ontology inference and search speed. Consequently, the proposed approach shows that the throughput is improved by 28,400% (157k/sec) from WebPie(553/sec) with LUBM.
Search

Journal of KIISE
- ISSN : 2383-630X(Print)
- ISSN : 2383-6296(Electronic)
- KCI Accredited Journal
Editorial Office
- Tel. +82-2-588-9240
- Fax. +82-2-521-1352
- E-mail. chwoo@kiise.or.kr